集中儲能式動態(tài)電壓恢復(fù)器的研究
本文選題:電壓跌落 + 動態(tài)電壓恢復(fù)器 ; 參考:《西安理工大學(xué)》2017年碩士論文
【摘要】:動態(tài)電壓恢復(fù)器(DVR)是保證敏感負荷電能質(zhì)量的重要器件,具有快速補償電壓,平穩(wěn)電壓波形的作用,但由于常規(guī)單獨DVR采用獨立儲能元件,具有使用率低、補償時間短、成本高等缺點;而改進型饋線間動態(tài)電壓恢復(fù)器(IDVR)雖提高了經(jīng)濟性,卻無法應(yīng)用于多饋線同時跌落的情況。因此,提出了集中儲能式動態(tài)電壓恢復(fù)器,可在提高單饋線電壓跌落補償效果的同時,又能對多饋線電壓同時跌落進行有效補償。首先,介紹了常規(guī)單獨DVR與IDVR的基本原理、檢測方法和補償策略,給出集中儲能式動態(tài)電壓恢復(fù)器的系統(tǒng)結(jié)構(gòu)圖,將不同饋線上的多個DVR共用同一儲能單元,并分析其工作原理。其次,建立集中儲能式DVR數(shù)學(xué)模型,對各部分拓撲結(jié)構(gòu)和相關(guān)參數(shù)進行推導(dǎo)選取。結(jié)合敏感負荷電壓反饋信號,采取PI控制對Park變換后的電壓信號進行調(diào)節(jié),實現(xiàn)集中儲能式DVR的動態(tài)電壓跟蹤。采用對dq變換后的d、q分量分別設(shè)置啟動門檻的方法,改進了判斷故障起止時刻的電壓故障判據(jù),提高了 DVR的靈敏性。最后,建立集中儲能式DVR仿真模型。在儲能容量相同的情況下,仿真對比集中儲能式DVR與常規(guī)單獨DVR的補償效果,可以得出:當負荷功率占總功率比值越小,則補償時間越長,補償幅值越接近跌落前的值,且“占比”小于40%的負荷其補償幅值近似等于1p.u.。在饋線間負荷功率和跌落深度不同的情況下,仿真分析兩饋線間的相互影響,可以得出:在兩饋線同時進行補償時,各條饋線間相互影響較小,電氣聯(lián)系相對獨立?紤]集中儲能式DVR遠距離補償時的阻抗影響,仿真計算了不同負荷下的最大補償距離。綜上分析表明:集中儲能式DVR能提高單饋線電壓跌落的補償幅值和補償時間,且能在饋線間互不影響的基礎(chǔ)上進行多饋線同時補償。
[Abstract]:Dynamic voltage restorer (DVR) is an important device to guarantee the power quality of sensitive load. It has the function of fast compensating voltage and steady voltage waveform. However, the conventional DVR adopts independent energy storage element, which has low utilization rate and short compensation time. Although the improved dynamic voltage restorer (IDVR) improves the economy, it can not be applied to the case of multiple feeders dropping simultaneously. Therefore, a centralized energy storage dynamic voltage restorer is proposed, which can not only improve the compensation effect of single-fed voltage drop, but also compensate multi-fed voltage drop at the same time. Firstly, the basic principle, detection method and compensation strategy of conventional single DVR and IDVR are introduced, and the system structure diagram of the centralized energy storage dynamic voltage restorer is given. The same energy storage unit is shared by multiple DVR on different feeders. Its working principle is analyzed. Secondly, the DVR mathematical model of centralized energy storage is established, and the topological structure and related parameters of each part are deduced and selected. Combined with the sensitive load voltage feedback signal, Pi control is adopted to adjust the voltage signal after Park transformation, and the dynamic voltage tracking of the centralized energy storage DVR is realized. By setting the threshold of the dq component of the DQ transform, the voltage fault criterion for judging the starting and ending time of the fault is improved, and the sensitivity of the DVR is improved. Finally, a centralized energy storage DVR simulation model is established. When the energy storage capacity is the same, the compensation effect of centralized energy storage DVR is compared with that of conventional single DVR. It is concluded that when the ratio of load power to total power is smaller, the compensation time is longer, and the compensation amplitude is closer to the value before dropping. And the compensation amplitude of the load whose "duty ratio" is less than 40% is approximately equal to 1 p. U. In the case of different load power and drop depth between the feeders, the interaction between the two feeders is analyzed by simulation. It can be concluded that when the two feeders are compensated at the same time, each feeder has less influence on each other and the electrical connection is relatively independent. The maximum compensation distance under different loads is calculated by simulation considering the impedance effect of centralized energy storage DVR for long distance compensation. The analysis shows that the centralized energy storage DVR can improve the compensation amplitude and compensation time of the voltage drop of the single feed line and can compensate the multiple feeders simultaneously on the basis of no influence between the feeders.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM761.12
【參考文獻】
相關(guān)期刊論文 前10條
1 吳丹岳;;基于譜估計和粒子群算法的電壓閃變計算方法[J];電力科學(xué)與技術(shù)學(xué)報;2016年04期
2 張波;黎燕;張睿;;UPS電源系統(tǒng)的原理和維護[J];自動化與儀器儀表;2016年12期
3 黃永紅;施慧;徐俊俊;張云帥;;改進dq變換的動態(tài)電壓恢復(fù)器檢測新方法[J];電力系統(tǒng)及其自動化學(xué)報;2016年10期
4 李博;張超君;孔凡偉;張彪;高翔;;雷擊引發(fā)的變電站通信設(shè)備火災(zāi)事故分析[J];電力安全技術(shù);2016年10期
5 李正明;李文文;張國松;劉亮;;一種補償電網(wǎng)電壓凹陷的DVR優(yōu)化補償策略[J];電力系統(tǒng)保護與控制;2016年17期
6 孟志宏;任永峰;杜鵬飛;郭錦偉;;基于混合儲能DVR的雙饋式風電機組故障穿越能力研究[J];水電能源科學(xué);2016年07期
7 馬振華;張藍宇;歐陽進;;基于動態(tài)電壓恢復(fù)器的控制策略與仿真研究[J];寧夏電力;2016年02期
8 李占凱;王景芹;張福民;馬巧云;唐圣學(xué);馬晨陽;;基于遞歸變窗最小方差法的電壓暫降快速檢測[J];電網(wǎng)技術(shù);2016年04期
9 張新聞;同向前;;電容耦合型動態(tài)電壓恢復(fù)器參數(shù)建模與控制[J];電工技術(shù)學(xué)報;2016年06期
10 孫強;魏克新;王莎莎;杜吉飛;高成海;;PWM變換器在矢量旋轉(zhuǎn)坐標系下比例諧振控制策略及其魯棒性設(shè)計[J];中國電機工程學(xué)報;2016年05期
相關(guān)博士學(xué)位論文 前3條
1 雷何;動態(tài)電壓恢復(fù)器控制技術(shù)若干關(guān)鍵問題研究[D];華中科技大學(xué);2014年
2 裴喜平;動態(tài)電壓恢復(fù)器檢測與控制方法研究[D];蘭州理工大學(xué);2014年
3 趙艷雷;動態(tài)電壓恢復(fù)器逆變單元的研究與實現(xiàn)[D];中國科學(xué)院研究生院(電工研究所);2006年
,本文編號:1909212
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1909212.html