風(fēng)力發(fā)電機(jī)組故障特征分析與診斷方法研究
本文選題:風(fēng)電機(jī)組 + 故障特征。 參考:《華北電力大學(xué)》2017年碩士論文
【摘要】:目前,風(fēng)力發(fā)電越來越受到全球各國(guó)的重視,隨著風(fēng)電機(jī)組的逐年投運(yùn),機(jī)組也逐步進(jìn)入事故高發(fā)階段。風(fēng)力發(fā)電機(jī)組故障診斷能夠有效減少重大事故的發(fā)生,而且可實(shí)時(shí)監(jiān)測(cè)風(fēng)力發(fā)電機(jī)組的運(yùn)行狀態(tài),識(shí)別其異常情況,降低運(yùn)行成本,保障機(jī)組安全高效運(yùn)行。因此,風(fēng)力發(fā)電機(jī)組的系統(tǒng)監(jiān)測(cè)與故障診斷已經(jīng)成為風(fēng)電發(fā)展中的重要研究方向。針對(duì)風(fēng)力發(fā)電機(jī)組故障頻發(fā)的現(xiàn)象,本文在深入分析風(fēng)電場(chǎng)SCADA數(shù)據(jù)的基礎(chǔ)上,對(duì)機(jī)組的整體運(yùn)行狀態(tài)作了評(píng)估,并且對(duì)其故障率較高的部位—發(fā)電機(jī)與齒輪箱,作了進(jìn)一步的分析與故障診斷設(shè)計(jì)。主要內(nèi)容如下:(1)介紹了風(fēng)力發(fā)電機(jī)組的工作原理與結(jié)構(gòu)組成,針對(duì)風(fēng)電機(jī)組的運(yùn)行特性,分析了機(jī)組的故障機(jī)理,并對(duì)機(jī)組故障易發(fā)部位及故障診斷常用方法進(jìn)行研究,提出針對(duì)不同信號(hào)源的故障診斷方法,進(jìn)而設(shè)計(jì)了本文故障診斷及狀態(tài)監(jiān)測(cè)方法。(2)運(yùn)用模糊綜合評(píng)判的方法,由某風(fēng)電場(chǎng)SCADA系統(tǒng)選取出某個(gè)時(shí)刻機(jī)組的運(yùn)行數(shù)據(jù),對(duì)風(fēng)電機(jī)組建立模糊綜合評(píng)判模型,按照所建立的模型,對(duì)機(jī)組的運(yùn)行狀態(tài)進(jìn)行劃分,本文將機(jī)組運(yùn)行狀態(tài)劃分為“優(yōu)、良、中、差”四個(gè)等級(jí),當(dāng)機(jī)組工作在“差”狀態(tài)時(shí),表明機(jī)組運(yùn)行已經(jīng)出現(xiàn)故障,需要立即停機(jī)進(jìn)行檢查,避免故障嚴(yán)重化,造成更大的損失。(3)風(fēng)力發(fā)電機(jī)組出現(xiàn)故障時(shí),需要對(duì)機(jī)組的各個(gè)子系統(tǒng)進(jìn)行故障診斷。本文采用非線性狀態(tài)評(píng)估方法,對(duì)機(jī)組的發(fā)電機(jī)和齒輪箱分別進(jìn)行建模與預(yù)警,通過設(shè)置溫度偏移來模擬故障發(fā)生,進(jìn)而驗(yàn)證了非線性狀態(tài)評(píng)估方法對(duì)發(fā)電機(jī)與齒輪箱故障診斷與狀態(tài)監(jiān)測(cè)的可行性,為風(fēng)電機(jī)組的故障診斷與狀態(tài)監(jiān)測(cè)提供了新的思路和參考。(4)風(fēng)力發(fā)電機(jī)組的子系統(tǒng)出現(xiàn)故障時(shí)會(huì)對(duì)機(jī)組造成一定的影響,本文通過分析發(fā)電機(jī)或齒輪箱出現(xiàn)故障時(shí)對(duì)機(jī)組輸出功率的影響,說明了風(fēng)電機(jī)組故障的相互關(guān)聯(lián)性,并且通過對(duì)影響的進(jìn)一步分析,得出了發(fā)電機(jī)側(cè)故障對(duì)機(jī)組的影響大于齒輪箱側(cè)的結(jié)果,為風(fēng)電機(jī)組排除故障提供了一定的參考。
[Abstract]:At present, wind power generation is paid more and more attention by the countries all over the world. With the wind turbine running year by year, the wind turbine has gradually entered the stage of high accident rate. The fault diagnosis of wind turbine can effectively reduce the occurrence of serious accidents, and can monitor the operating state of wind turbine in real time, identify its abnormal situation, reduce the operating cost and ensure the safe and efficient operation of wind turbine. Therefore, wind turbine system monitoring and fault diagnosis has become an important research direction in wind power development. In this paper, based on the analysis of wind farm SCADA data, the overall operating state of wind turbine generator is evaluated, and the high failure rate of generator and gearbox is discussed. Further analysis and fault diagnosis design are made. The main contents are as follows: (1) the working principle and structure of wind turbine are introduced. According to the operating characteristics of wind turbine, the fault mechanism of wind turbine is analyzed, and the fault prone parts and common methods of fault diagnosis are studied. This paper presents a fault diagnosis method for different signal sources, and then designs the method of fault diagnosis and condition monitoring in this paper. By using the method of fuzzy comprehensive evaluation, the operation data of the unit at a certain time are selected from the SCADA system of a wind farm. The fuzzy comprehensive evaluation model of wind turbine is established. According to the established model, the operating state of the unit is divided into four grades: "excellent, good, medium and bad". When the unit is working in a "bad" state, the operating state of the unit is divided into four grades: "excellent, good, medium and bad". It shows that the operation of the unit has already appeared the fault, it is necessary to stop immediately to check, avoid the fault serious, cause bigger loss. 3) when the wind turbine has the fault, need to carry on the fault diagnosis to each subsystem of the unit. In this paper, the nonlinear state evaluation method is used to model and warn the generator and gearbox respectively, and the fault is simulated by setting temperature offset. Furthermore, the feasibility of nonlinear state evaluation method for fault diagnosis and condition monitoring of generator and gearbox is verified. It provides a new way of thinking and reference for wind turbine fault diagnosis and condition monitoring. By analyzing the influence of generator or gearbox failure on the output power of the unit, this paper explains the interrelation of the wind turbine fault, and through the further analysis of the influence, It is concluded that the effect of generator side fault is greater than that of gearbox side, which provides a certain reference for wind turbine troubleshooting.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM315
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;風(fēng)電提前實(shí)現(xiàn)“十二五”裝機(jī)目標(biāo) 棄風(fēng)現(xiàn)象深度反彈,產(chǎn)業(yè)頑疾如何破局[J];玻璃鋼/復(fù)合材料;2015年05期
2 ;2014年中國(guó)風(fēng)電裝機(jī)容量統(tǒng)計(jì)[J];風(fēng)能;2015年02期
3 肖運(yùn)啟;王昆朋;賀貫舉;孫燕平;楊錫運(yùn);;基于趨勢(shì)預(yù)測(cè)的大型風(fēng)電機(jī)組運(yùn)行狀態(tài)模糊綜合評(píng)價(jià)[J];中國(guó)電機(jī)工程學(xué)報(bào);2014年13期
4 孫建平;朱雯;翟永杰;葛建宏;;基于MSET方法的風(fēng)電機(jī)組齒輪箱預(yù)警仿真研究[J];系統(tǒng)仿真學(xué)報(bào);2013年12期
5 劉鑫沛;翟永杰;張君穎;;基于聚類分析和狀態(tài)估計(jì)的制粉系統(tǒng)故障預(yù)警[J];計(jì)算機(jī)仿真;2013年08期
6 董玉亮;李亞瓊;曹海斌;何成兵;顧煜炯;;基于運(yùn)行工況辨識(shí)的風(fēng)電機(jī)組健康狀態(tài)實(shí)時(shí)評(píng)價(jià)方法[J];中國(guó)電機(jī)工程學(xué)報(bào);2013年11期
7 董昱廷;王海云;唐新安;;風(fēng)電機(jī)組狀態(tài)監(jiān)測(cè)系統(tǒng)現(xiàn)狀[J];電機(jī)與控制應(yīng)用;2013年04期
8 張傳標(biāo);倪建軍;劉明華;馬華偉;;樣本優(yōu)化核主元分析及其在水質(zhì)監(jiān)測(cè)中的應(yīng)用[J];中國(guó)環(huán)境監(jiān)測(cè);2012年02期
9 郭鵬;David Infield;楊錫運(yùn);;風(fēng)電機(jī)組齒輪箱溫度趨勢(shì)狀態(tài)監(jiān)測(cè)及分析方法[J];中國(guó)電機(jī)工程學(xué)報(bào);2011年32期
10 李輝;胡姚剛;楊超;李學(xué)偉;唐顯虎;;并網(wǎng)風(fēng)電機(jī)組運(yùn)行狀態(tài)的物元評(píng)估方法[J];電力系統(tǒng)自動(dòng)化;2011年06期
相關(guān)碩士學(xué)位論文 前7條
1 楊明莉;大型風(fēng)電機(jī)組故障診斷研究[D];上海電機(jī)學(xué)院;2015年
2 任杰;大型風(fēng)電機(jī)組運(yùn)行狀態(tài)評(píng)價(jià)與分析[D];華北電力大學(xué);2014年
3 房寧;基于主元分析類方法的風(fēng)電機(jī)組部件建模分析與監(jiān)測(cè)研究[D];華北電力大學(xué);2014年
4 梁穎;基于SCADA系統(tǒng)的大型風(fēng)電機(jī)組在線狀態(tài)評(píng)估及故障定位研究[D];華僑大學(xué);2013年
5 白楠;基于概率統(tǒng)計(jì)的非參數(shù)模型狀態(tài)監(jiān)測(cè)[D];華北電力大學(xué);2013年
6 胡姚剛;并網(wǎng)風(fēng)力發(fā)電機(jī)組的運(yùn)行狀態(tài)評(píng)估[D];重慶大學(xué);2011年
7 宋磊;風(fēng)電機(jī)組故障測(cè)試與統(tǒng)計(jì)分析[D];華北電力大學(xué)(北京);2010年
,本文編號(hào):1886973
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1886973.html