高海拔地區(qū)交流輸電線路可聽噪聲產(chǎn)生機理及預測方法研究
本文選題:交流輸電線路 + 高海拔; 參考:《中國電力科學研究院》2017年碩士論文
【摘要】:隨著我國超/特高壓輸電技術(shù)的快速發(fā)展和全球能源互聯(lián)網(wǎng)解決方案的正式提出,大量的超/特高壓輸電線路將跨越高海拔地區(qū)。超/特高壓交流輸電線路的可聽噪聲預測技術(shù)是輸變電工程電磁環(huán)境控制的關(guān)鍵技術(shù)之一。高海拔地區(qū)電暈放電劇烈,可聽噪聲更為明顯。因此,研究高海拔地區(qū)交流輸電線路的可聽噪聲特性,獲得更為準確的可聽噪聲預測技術(shù)對保證高海拔地區(qū)交流輸電線路建設(shè)的經(jīng)濟性和環(huán)境友好性至關(guān)重要。為此,論文從噪聲產(chǎn)生機理和噪聲預測方法兩個方面對高海拔地區(qū)交流輸電線路的可聽噪聲問題進行了研究,研究內(nèi)容如下:噪聲產(chǎn)生機理方面,利用電磁屏蔽室內(nèi)小型電暈籠試驗系統(tǒng)和BruelKjaer聲學采集系統(tǒng)開展電暈聲波脈沖特性試驗研究,對縮尺模型導線上單個尖電極的噪聲時域波形進行了測量,討論了外加電壓幅值對聲波脈沖參數(shù)的影響規(guī)律。通過對比不同曲率半徑尖電極電暈放電產(chǎn)生的噪聲時域波形,獲得了尖電極曲率半徑對聲波脈沖幅值以及脈沖重復頻率的影響規(guī)律。噪聲預測方面主要包括以下兩部分內(nèi)容。首先利用高海拔電暈籠試驗平臺對19種不同型式分裂導線進行了好天氣下和大雨條件下的噪聲試驗研究,系統(tǒng)地研究了導線表面場強、子導線直徑以及導線分裂數(shù)和對聲功率的影響規(guī)律。并基于以上規(guī)律利用多元回歸分析方法對試驗獲得的噪聲數(shù)據(jù)進行了假設(shè)檢驗和分析擬合,初步建立了基于西寧海拔條件下的交流輸電線路可聽噪聲預測方法。其次利用可移動式電暈籠對6種型式分裂導線開展了 7個不同海拔高度下的噪聲試驗研究,獲得了海拔高度以及空氣相對密度對聲功率的影響規(guī)律。而后通過多元線性回歸分析方法對試驗測得數(shù)據(jù)進行了分析擬合,提出了基于多海拔實測數(shù)據(jù)下的交流輸電線路聲功率預測方法。通過將預測方法計算值與試驗實測值進行對比分析,驗證了本文所提預測方法的準確性。本文研究成果具有一定的理論意義和重要的工程應用價值,可以為高海拔地區(qū)交流輸電線路聲功率預測提供理論依據(jù)與技術(shù)支撐。
[Abstract]:With the rapid development of ultra-high voltage (UHV) transmission technology in China and the proposed global energy Internet solution, a large number of UHV transmission lines will span high altitude areas. The prediction technology of audible noise for UHV AC transmission lines is one of the key technologies for electromagnetic environment control in power transmission and transformation projects. At high altitude, the corona discharge is intense, and the audible noise is more obvious. Therefore, it is very important to study the characteristics of audible noise of AC transmission lines at high altitude and obtain more accurate prediction technology of audible noise to ensure the economy and environmental friendliness of AC transmission line construction at high altitude. Therefore, this paper studies the audible noise of AC transmission lines at high altitude from two aspects of noise generation mechanism and noise prediction method. The research contents are as follows: noise generation mechanism, Using the small corona cage test system and the BruelKjaer acoustic acquisition system in the electromagnetic shielding room, the corona acoustic pulse characteristics were studied, and the noise time domain waveform of a single tip electrode on the scale model wire was measured. The effect of applied voltage amplitude on acoustic pulse parameters is discussed. The effect of curvature radius of tip electrode on the amplitude of acoustic pulse and pulse repetition rate is obtained by comparing the noise time domain waveform generated by corona discharge of tip electrode with different curvature radii. Noise prediction mainly includes the following two parts. At first, the noise of 19 different types of split conductors under good weather and heavy rain were studied by using the high altitude corona cage test platform, and the surface field strength of the conductors was systematically studied. The influence of the diameter of the sub-conductor, the number of conductors splitting and the sound power. Based on the above rules, the noise data obtained from the experiment are tested and analyzed by using multiple regression analysis method, and a preliminary prediction method of audible noise of AC transmission line based on Xining elevation is established. Secondly, using movable corona cage, the noise of 6 types of split conductors is studied at 7 different altitudes, and the influence of altitude and relative density of air on sound power is obtained. Then, the experimental data are analyzed and fitted by multivariate linear regression analysis, and a method of acoustic power prediction for AC transmission lines based on the measured data at multiple elevations is proposed. The accuracy of the proposed prediction method is verified by comparing the calculated values with the experimental measured values. The research results in this paper have certain theoretical significance and important engineering application value, and can provide theoretical basis and technical support for the prediction of acoustic power of AC transmission lines in high altitude area.
【學位授予單位】:中國電力科學研究院
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM75
【參考文獻】
相關(guān)期刊論文 前10條
1 萬保權(quán);武曉蕊;裴春明;陳豫朝;周兵;;基于回歸分析法的交流輸電線路聲功率計算方法[J];高電壓技術(shù);2017年04期
2 胡鞍鋼;鄢一龍;姜佳瑩;;“十三五”規(guī)劃及2030年遠景目標的前瞻性思考[J];行政管理改革;2015年02期
3 覃琴;郭強;周勤勇;秦曉輝;;國網(wǎng)“十三五”規(guī)劃電網(wǎng)面臨的安全穩(wěn)定問題及對策[J];中國電力;2015年01期
4 賀振華;王瑋;黃文武;鄧慰;李煉煉;張瑞;白波;;兩種紫外成像儀檢測電暈放電的對比研究[J];高壓電器;2014年08期
5 李學寶;崔翔;盧鐵兵;張娣;;正極性單點電暈放電可聽噪聲時域波形擬合及分析[J];電網(wǎng)技術(shù);2014年06期
6 張東霞;姚良忠;馬文媛;;中外智能電網(wǎng)發(fā)展戰(zhàn)略[J];中國電機工程學報;2013年31期
7 王思童;;首個“十三五”電網(wǎng)規(guī)劃發(fā)布 拉動電力裝備市場新格局[J];電器工業(yè);2013年10期
8 王勝輝;郭文義;律方成;劉云鵬;;電暈放電紫外成像圖像參量變化特性的研究[J];高壓電器;2013年08期
9 孫玉嬌;周勤勇;申洪;;未來中國輸電網(wǎng)發(fā)展模式的分析與展望[J];電網(wǎng)技術(shù);2013年07期
10 李炳元;潘保田;程維明;韓嘉福;齊德利;朱澈;;中國地貌區(qū)劃新論[J];地理學報;2013年03期
,本文編號:1881641
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1881641.html