天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 電氣論文 >

基于機(jī)器學(xué)習(xí)技術(shù)的配電網(wǎng)故障恢復(fù)算法研究

發(fā)布時(shí)間:2018-05-08 02:39

  本文選題:機(jī)器學(xué)習(xí) + 故障恢復(fù) ; 參考:《湘潭大學(xué)》2017年碩士論文


【摘要】:智能電網(wǎng)正在日益成為電網(wǎng)技術(shù)的發(fā)展趨勢(shì),智能配電網(wǎng)屬于智能電網(wǎng)當(dāng)中重要的一部分。智能配電網(wǎng)通常具有較為完備的故障診斷以及自愈功能,以此來(lái)提高電網(wǎng)的穩(wěn)定性以及可靠性,同時(shí)智能配電網(wǎng)也支持接入分布式電源。具有優(yōu)秀自愈能力的配電網(wǎng)能夠最大程度減小配電網(wǎng)故障對(duì)于用戶產(chǎn)生的影響,從而提高用戶的用電體驗(yàn)以及配電網(wǎng)的穩(wěn)定性。配電網(wǎng)的故障恢復(fù)是指在配電網(wǎng)的某處發(fā)生故障時(shí),通過(guò)各個(gè)支路的開(kāi)關(guān)以及聯(lián)絡(luò)開(kāi)關(guān)進(jìn)行通斷操作從而改變配電網(wǎng)的結(jié)構(gòu),將受到故障影響的失電區(qū)域負(fù)載轉(zhuǎn)移到其他饋線或者電源進(jìn)行供電,從而使失電負(fù)載恢復(fù)供電。根據(jù)配電網(wǎng)故障信息找到最佳的故障恢復(fù)路徑是故障恢復(fù)的主要任務(wù),這是一個(gè)典型的多目標(biāo)非線性問(wèn)題。本文的主要內(nèi)容和創(chuàng)新點(diǎn)如下:(1)介紹配電網(wǎng)的構(gòu)造以及種類(lèi),對(duì)配電網(wǎng)的故障恢復(fù)技術(shù)研究現(xiàn)狀和存在的技術(shù)難點(diǎn)進(jìn)行了總結(jié)和分析,介紹了當(dāng)前配電網(wǎng)故障恢復(fù)的相關(guān)理論和一些常用的方案。(2)闡述機(jī)器學(xué)習(xí)理論,以及相關(guān)技術(shù)在配電網(wǎng)故障恢復(fù)上的發(fā)展,并提出一種基于回聲狀態(tài)網(wǎng)絡(luò)(ESN)的配電網(wǎng)故障恢復(fù)算法,通過(guò)回聲狀態(tài)網(wǎng)絡(luò)優(yōu)秀的動(dòng)態(tài)特性對(duì)配電網(wǎng)的故障信息進(jìn)行學(xué)習(xí),同時(shí)設(shè)計(jì)樹(shù)形遍歷法結(jié)合ESN的輸出對(duì)配電網(wǎng)的結(jié)構(gòu)進(jìn)行改變,這種方式能使配電網(wǎng)在更改結(jié)構(gòu)的過(guò)程中始終保持輻射狀運(yùn)行條件,因此無(wú)需考慮學(xué)習(xí)過(guò)程中由于學(xué)習(xí)誤差而對(duì)配電網(wǎng)結(jié)構(gòu)約束造成的影響。(3)在基于回聲狀態(tài)網(wǎng)絡(luò)的故障恢復(fù)方案基礎(chǔ)上結(jié)合了非支配目標(biāo)排序遺傳算法-2(NSGA-II),通過(guò)NSGA-II優(yōu)秀的全局搜索能力與多目標(biāo)優(yōu)化能力使配電網(wǎng)系統(tǒng)進(jìn)行非監(jiān)督學(xué)習(xí),這種學(xué)習(xí)方案由于不需要進(jìn)行訓(xùn)練樣本的收集,因此一定程度上減少了時(shí)間成本。(4)以標(biāo)準(zhǔn)16節(jié)點(diǎn)配電網(wǎng)為實(shí)驗(yàn)場(chǎng)景,將本文中研究的基于機(jī)器學(xué)習(xí)技術(shù)的故障恢復(fù)學(xué)習(xí)方案應(yīng)用于配電網(wǎng)的故障恢復(fù)學(xué)習(xí)當(dāng)中,使配電網(wǎng)系統(tǒng)能夠通過(guò)學(xué)習(xí)不同故障狀態(tài)下的配電網(wǎng)故障恢復(fù)方案,從而使系統(tǒng)能夠?qū)Σ煌墓收闲畔⑦M(jìn)行快速反應(yīng)。
[Abstract]:Smart grid is increasingly becoming the development trend of grid technology. Smart distribution network is an important part of smart grid. Smart distribution network usually has more complete fault diagnosis and self-healing functions to improve the stability and reliability of the network, and smart distribution network also supports access to distributed generation. The distribution network with excellent self-healing ability can minimize the influence of distribution network fault on users to improve the user's experience of power consumption and the stability of distribution network. The fault recovery of distribution network is to change the structure of distribution network by switching on and off each branch switch and contact switch when there is a fault somewhere in the distribution network. The load of the power loss area affected by the fault is transferred to other feeders or power sources for power supply, so that the power loss load can be restored. The main task of fault recovery is to find the best fault recovery path according to the fault information of distribution network, which is a typical multi-objective nonlinear problem. The main contents and innovations of this paper are as follows: (1) introducing the structure and types of distribution network, summarizing and analyzing the present situation and technical difficulties of fault recovery technology in distribution network. This paper introduces the related theories of distribution network fault recovery and some commonly used schemes. It describes the theory of machine learning and the development of related technology in distribution network fault recovery. A fault recovery algorithm based on echo state network (ESNN) is proposed. The excellent dynamic characteristics of echo state network are used to learn the fault information of distribution network. At the same time, the tree traversal method combined with the output of ESN is designed to change the structure of the distribution network, which can make the distribution network always keep the radiation operation condition in the process of changing the structure. Therefore, it is unnecessary to consider the influence of learning errors on the distribution network structure constraints in the learning process. (3) based on the fault recovery scheme based on echo state network, the non-dominant target ranking genetic algorithm -2n NSGA-IIG is combined, and NSGA-II is used to optimize the performance. The global search ability and multi-objective optimization ability of the show enable the distribution network system to carry out unsupervised learning. Because the training sample collection is not needed, this learning scheme reduces the time cost to some extent.) the standard 16-node distribution network is used as the experimental scenario. In this paper, the machine learning technology based fault recovery learning scheme is applied to the distribution network fault recovery learning, so that the distribution network system can learn the distribution network fault recovery scheme under different fault states. So that the system can respond to different fault information quickly.
【學(xué)位授予單位】:湘潭大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TM732

【參考文獻(xiàn)】

相關(guān)期刊論文 前7條

1 劉丹丹;段斌;王俊;蘇永新;;基于IEC 61850的主動(dòng)配電網(wǎng)故障自恢復(fù)多代理系統(tǒng)[J];電力系統(tǒng)自動(dòng)化;2015年09期

2 姚玉海;王增平;郭昆亞;金鵬;;基于E占優(yōu)的多目標(biāo)二進(jìn)制粒子群算法求解配電網(wǎng)故障恢復(fù)[J];電力系統(tǒng)保護(hù)與控制;2014年23期

3 劉健;孫泉;張小慶;張志華;;配電網(wǎng)合環(huán)分析與合環(huán)條件判斷[J];電力系統(tǒng)自動(dòng)化;2014年11期

4 李國(guó)武;張雁忠;黃巍松;金強(qiáng);;基于IEC 61850的分布式能源智能監(jiān)控終端通信模型[J];電力系統(tǒng)自動(dòng)化;2013年10期

5 范明天;;中國(guó)配電網(wǎng)面臨的新形勢(shì)及其發(fā)展思路[J];供用電;2013年01期

6 劉莉;陳學(xué)鋒;翟登輝;;智能配電網(wǎng)故障恢復(fù)的現(xiàn)狀與展望[J];電力系統(tǒng)保護(hù)與控制;2011年13期

7 楊忠祥;機(jī)器學(xué)習(xí)研究的發(fā)展現(xiàn)狀與動(dòng)向[J];信息與控制;1987年01期

相關(guān)碩士學(xué)位論文 前4條

1 潘登;分布式電源接入配電網(wǎng)能效測(cè)評(píng)與仿真研究[D];北京交通大學(xué);2014年

2 焦偉龍;高供電能力配電網(wǎng)故障恢復(fù)方法及應(yīng)用技術(shù)研究[D];山東大學(xué);2014年

3 楊樂(lè)新;配電網(wǎng)智能開(kāi)關(guān)裝置的研究[D];華北電力大學(xué)(北京);2011年

4 王文新;配電網(wǎng)繼電保護(hù)整定計(jì)算軟件的開(kāi)發(fā)[D];華北電力大學(xué)(河北);2007年

,

本文編號(hào):1859623

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1859623.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1985b***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
青青操精品视频在线观看| 午夜视频成人在线免费| 国产av一区二区三区四区五区| 麻豆印象传媒在线观看| 日本女人亚洲国产性高潮视频| 精品午夜福利无人区乱码| 日本加勒比在线播放一区| 欧洲亚洲精品自拍偷拍| 欧美久久一区二区精品| 日韩精品一区二区三区av在线| 九九热这里有精品20| 日本少妇aa特黄大片| 五月婷婷欧美中文字幕| 婷婷激情四射在线观看视频 | 欧美日韩国产二三四区| 狠狠做五月深爱婷婷综合| 久久国产成人精品国产成人亚洲| 国产一区二区三区草莓av| 日韩国产传媒在线精品| 亚洲熟妇av一区二区三区色堂| 福利新区一区二区人口| 欧美色欧美亚洲日在线| 亚洲国产成人久久99精品| 欧美日韩乱码一区二区三区| 少妇丰满a一区二区三区| 久热99中文字幕视频在线| 国产一级性生活录像片| 日韩精品视频一二三区| 国产成人精品一区在线观看| 大香蕉大香蕉手机在线视频| 国产精品一区二区成人在线| 日韩精品一级片免费看| 亚洲天堂一区在线播放| 国产av一区二区三区久久不卡| 日韩国产亚洲欧美另类| 五月综合婷婷在线伊人| 亚洲国产丝袜一区二区三区四| 亚洲精品偷拍视频免费观看| 成年午夜在线免费视频| 草草视频福利在线观看| 91香蕉国产观看免费人人|