以氫氧化鈷為電極材料的對稱式超級電容器性能研究
本文選題:氫氧化鈷 + 鐵氰化鉀 ; 參考:《吉林大學(xué)》2016年碩士論文
【摘要】:隨著經(jīng)濟的發(fā)展,人們對于自然資源的需求量越來越大,對自然環(huán)境的破壞也越來越嚴重。這使得地球上原本豐富的自然資源日益匱乏,如霧霾、全球變暖等環(huán)境問題愈演愈烈。超級電容器作為綠色環(huán)保儲能器件得到了越來越多的關(guān)注。超級電容器根據(jù)其正、負極材料可分為對稱超級電容器與非對稱超級電容器。相對于非對稱超級電容器,對稱超級電容器的制作簡單,成本低。而相對于有機體系的超級電容器,水系超級電容器更加綠色環(huán)保、安全。但是水系電解液的工作窗口較低,約在1.2 V左右。因此,若要提高水系電容器的能量密度需要從提高電容器的比電容角度考慮。電容器的比電容源于電極和電解液兩部分?梢酝ㄟ^電極材料和電解質(zhì)各自的氧化還原反應(yīng)存儲和釋放電荷,同時、獨立、互不影響,疊加地貢獻能量是提高該類化學(xué)電源裝置性能的最有效手段。在眾多電極材料的中,過渡金屬化合物氫氧化鈷(Co(OH)_2)的研究及應(yīng)用較為廣泛,尤其是α-Co(OH)2作為電極時其比電容較高,可逆性好。在電解中添加電活性物質(zhì)可以提高電容器的比電容。電活性物質(zhì)鐵氰化鉀(K_3[Fe(CN)_6]),亞鐵氰化鉀(K_4[Fe(CN)_6]),對苯二胺(PPD)作為無機離子和中性粒子的代表引起了許多科學(xué)家的興趣。本文的目的是以α-Co(OH)_2為對稱式電容器電極材料,在傳統(tǒng)電解液氫氧化鉀(KOH)中加入電活性物質(zhì)并以離子交換膜將正負極室隔開,形成電極對稱電解液不對稱體系來提高氫氧化鈷對稱式超級電容的能量密度。這種方法僅見于本組的論文當(dāng)中并且此前未見有關(guān)于α-Co(OH)_2作為對稱式電容器正極及負極材料的報道。研究還發(fā)現(xiàn),由于電極與電解液對超級電容器電容產(chǎn)生不同的貢獻,提高電解液中氧化還原物質(zhì)的濃度能大幅度提高超級電容器的比電容和能量密度。基于以上實驗思路本文展開以下工作:首先,利用恒電位電化學(xué)沉積方法制得α-Co(OH)_2,經(jīng)SEM測試α-Co(OH)_2呈納米花瓣狀垂直于碳紙(CFP)生長。選擇質(zhì)量約為0.96 mg的α-Co(OH)_2,在KOH電解液內(nèi)測試,其比電容可達到742 F/g。為了使得電極與電解液同時貢獻贗電容,在KOH電解液中添加鐵氰化鉀(K3[Fe(CN)_6]),以此作為電容器的正極體系,電位窗口為-0.1~0.45 V。經(jīng)測試,當(dāng)K_3[Fe(CN)_6]的濃度為0.05mol/L時,其比電容可達到2126 F/g。至于電容器的負極體系,我們在KOH電解液中添加對苯二胺(PPD),經(jīng)過循環(huán)伏安測試后發(fā)現(xiàn)電極體系在較負的電位處出現(xiàn)一對氧化還原峰,使得電位窗口擴大到-1.0~0.45V。其次,使用制作的CFP/Co(OH)_2作為電極,用1mol/L KOH水溶液為電解液,組成Co(OH)_2|KOH|Co(OH)_2對稱式超級電容器,經(jīng)測試,其能量密度可達到4.44 Wh/kg,工作電壓窗口可達到1.5V,而且具備較好的循環(huán)壽命(1000圈,87.6%)。其充放電的機制為兩個電極上的氧還原反應(yīng),與之前報道過的以β-Co(OH)_2為電極材料,KOH為電解液的對稱式電容器中正極氧化還原,負極雙電層的充放電機制不同。然后,在正極室內(nèi)添加10 m L的1mol/L KOH+0.05 mol/L K_3[Fe(CN)_6]水溶液,負極室內(nèi)添加10 m L的1mol/L KOH+0.05 mol/L K_4[Fe(CN)_6]水溶液,并以離子交換膜將正、負極室隔開,組成Co(OH)_2|KOH+K_3[Fe(CN)_6]||K_4[Fe(CN)_6]+KOH|Co(OH)_2電容器。經(jīng)測試,其能量密度可達到7.75 Wh/kg,若提高氧化還原物質(zhì)的濃度,則比電容進一步增大。經(jīng)過1000次循環(huán)后,其循環(huán)穩(wěn)定性保持在89.2%。最后,為了進一步地提高電容器的能量密度,利用PPD和K_3[Fe(CN)_6]之間的電位差較大,采用1mol/L KOH+0.02 mol/L K_3[Fe(CN)_6]和1mol/L KOH+0.01 mol/LPPD作為電容器的正、負極電解液。經(jīng)測試,電容器的能量密度可達到8.31 Wh/kg,當(dāng)電活性物質(zhì)K_3[Fe(CN)_6]和PPD的濃度提高到0.36 mol/L和0.18 mol/L時,電容器能量密度為49.5 Wh/kg,對應(yīng)的功率密度為197 W/kg。但由于PPD與電極之間相互影響和PPD透過交換膜的問題,電容器的穩(wěn)定性并不好(1000圈,40.4%)。
[Abstract]:With the development of the economy, the demand for natural resources is increasing, and the destruction of the natural environment is becoming more and more serious. This makes the original rich natural resources on the earth increasingly scarce, such as haze, global warming and other environmental problems. Supercapacitors have been paid more and more attention as green - green energy storage devices. Supercapacitors can be divided into symmetrical supercapacitors and asymmetric supercapacitors according to their positive, negative electrode materials. Compared with asymmetric supercapacitors, symmetric supercapacitors are easy to produce and have low cost. The water system supercapacitor is more green and safe than the organic supercapacitor, but the water system electrolyte works The window is about 1.2 V. Therefore, to improve the energy density of the water system capacitor, it is necessary to improve the capacitor's specific capacitance angle. The capacitor's specific capacitance is derived from two parts of the electrode and electrolyte. Adding the contribution energy is the most effective means to improve the performance of this kind of chemical power supply. In many electrode materials, the research and application of the transition metal cobalt hydroxide (Co (OH) _2) is more extensive, especially when the alpha -Co (OH) 2 is used as the electrode with higher specific capacitance and better invertibility. The addition of electroactive substances to electrolysis can improve the capacitor. Specific capacitance. The electroactive substance ferricyanide potassium (K_3[Fe (CN) _6]), potassium ferrocyanide (K_4[Fe (CN) _6]), and the representation of benzene two amine (PPD) as the inorganic ion and neutral particle have aroused many scientists' interest. The purpose of this paper is to use alpha -Co (OH) _2 as a symmetrical electric container electrode material to add electrical activity to the traditional electrolyte potassium hydroxide (KOH). The material is separated from the positive and negative electrode with the ion exchange membrane to form an asymmetric electrolyte electrolyte system to improve the energy density of the co symmetric supercapacitor of the hydrogen oxide. This method is only found in this paper and has not previously reported that alpha -Co (OH) _2 was used as the positive electrode and negative material of the symmetrical electric vessel. Since the electrode and the electrolyte have different contributions to the capacitance of the supercapacitor, the specific capacitance and the energy density of the supercapacitor can be greatly improved by increasing the concentration of the redox material in the electrolyte. Based on the above experimental ideas, the following work is carried out in this paper. Firstly, the constant potential electrochemical deposition method is used to produce the alpha -Co (OH) _2, and the SEM test is tested by the method of constant potential electrodeposition. The growth of alpha -Co (OH) _2 is perpendicular to carbon paper (CFP). The choice of alpha -Co (OH) _2 with a mass of about 0.96 mg is tested in the KOH electrolyte, and its specific capacitance can reach 742 F/g. in order to make the electrode and the electrolyte simultaneously contribute the pseudo capacitance and add potassium ferricyanate (K3[Fe) in the KOH electrolyte as the positive system of the capacitor, the potential window. When the -0.1~0.45 V. is tested, when the concentration of K_3[Fe (CN) _6] is 0.05mol/L, the specific capacitance can reach 2126 F/g. as to the negative electrode system of the capacitor. We add the benzene two amine (PPD) in the KOH electrolyte. After cyclic voltammetry, it is found that the electrode system has a pair of oxidation-reduction peaks at the negative potential, which makes the potential window expand to -1.0~0.45V. secondly, using the CFP/Co (OH) _2 as the electrode and the 1mol/L KOH water solution as the electrolyte, the Co (OH) _2|KOH|Co (OH) _2 symmetric supercapacitor is formed. The energy density of the Co (OH) _2|KOH|Co (OH) _2 symmetric supercapacitor can reach 4.44 Wh/kg, and the working voltage window can be reached, and has a good cycle life (1000 rings, 87.6%). The mechanism of its charge discharge is two. The oxygen reduction reaction on the electrode is different from the positive electrode redox of the symmetrical capacitor with the beta -Co (OH) _2 as the electrode material and the KOH as the electrolyte, and the negative electrode double layer is different. Then, the 1mol/L KOH+0.05 mol/L K_3[Fe (CN) aqueous solution of 10 m L is added in the cathode room, and the negative chamber is added to the negative chamber. The +0.05 mol/L K_4[Fe (CN) _6] water solution is separated by an ion exchange membrane and separates the negative electrode chamber to form a Co (OH) _2|KOH+K_3[Fe (CN) _6]||K_4[Fe (CN) _6]+KOH|Co (CN) _6]+KOH|Co capacitor. It is tested that the energy density can reach 7.75. If the concentration of the redox substance is increased, the capacitance is further increased. After 1000 cycles, its cycle is stable. At the end of 89.2%., in order to further improve the energy density of the capacitor, the potential difference between the PPD and K_3[Fe (CN) _6] is larger, and the 1mol/L KOH+0.02 mol/L K_3[Fe (CN) _6] and 1mol/L anode are used as the positive and negative electrolyte of the capacitor. The energy density of the capacitor can reach 8.31 When the concentration of K_3[Fe (CN) _6] and PPD increased to 0.36 mol/L and 0.18 mol/L, the energy density of the capacitor was 49.5 Wh/kg, and the corresponding power density was 197 W/kg., but the stability of the capacitor was not good (1000 circles, 40.4%) due to the interaction between PPD and the electrode and the exchange membrane of PPD through the exchange membrane.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TM53
【相似文獻】
相關(guān)期刊論文 前10條
1 劉建新;超級電容器在直流電源系統(tǒng)中的應(yīng)用[J];華東交通大學(xué)學(xué)報;2002年03期
2 桂長清;新型貯能單元超級電容器[J];電池工業(yè);2003年04期
3 ;超級電容器[J];電源世界;2004年03期
4 文建國,周震濤,文衍宣;超級電容器材料研究的辯證思維[J];東莞理工學(xué)院學(xué)報;2004年01期
5 李薦,鐘暉,鐘海云,戴艷陽,溫俊杰;超級電容器應(yīng)用設(shè)計[J];電源技術(shù);2004年06期
6 Bobby Maher;;超級電容器簡介[J];今日電子;2006年01期
7 王鑫;;超級電容器在汽車啟動中的應(yīng)用[J];國外電子元器件;2006年05期
8 Matt Reynolds;;替代能源中的超級電容器介紹[J];今日電子;2006年07期
9 陳新麗;李偉善;;超級電容器電極材料的研究現(xiàn)狀與發(fā)展[J];廣東化工;2006年07期
10 常建中;;超級電容器串聯(lián)應(yīng)用中的均壓問題以及解決途徑[J];長治學(xué)院學(xué)報;2006年02期
相關(guān)會議論文 前10條
1 馬衍偉;張熊;余鵬;陳堯;;新型超級電容器納米電極材料的研究[A];2009中國功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
2 張易寧;何騰云;;超級電容器電極材料的最新研究進展[A];第二十八屆全國化學(xué)與物理電源學(xué)術(shù)年會論文集[C];2009年
3 鐘輝;曾慶聰;吳丁財;符若文;;聚苯乙烯基層次孔碳的活化及其在超級電容器中的應(yīng)用[A];中國化學(xué)會第15屆反應(yīng)性高分子學(xué)術(shù)討論會論文摘要預(yù)印集[C];2010年
4 趙家昌;賴春艷;戴揚;解晶瑩;;扣式超級電容器組的研制[A];第十二屆中國固態(tài)離子學(xué)學(xué)術(shù)會議論文集[C];2004年
5 單既成;陳維英;;超級電容器與通信備用電源[A];通信電源新技術(shù)論壇——2008通信電源學(xué)術(shù)研討會論文集[C];2008年
6 王燕;吳英鵬;黃毅;馬延風(fēng);陳永勝;;單層石墨用作超級電容器的研究[A];2009年全國高分子學(xué)術(shù)論文報告會論文摘要集(上冊)[C];2009年
7 趙健偉;倪文彬;王登超;黃忠杰;;超級電容器電極材料的設(shè)計、制備及性質(zhì)研究[A];中國化學(xué)會第27屆學(xué)術(shù)年會第10分會場摘要集[C];2010年
8 張琦;鄭明森;董全峰;田昭武;;基于薄液層反應(yīng)的新型超級電容器——多孔碳電極材料的影響[A];中國化學(xué)會第27屆學(xué)術(shù)年會第10分會場摘要集[C];2010年
9 馬衍偉;;新型超級電容器石墨烯電極材料的研究[A];第七屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集(第7分冊)[C];2010年
10 劉不厭;彭喬;孫s,
本文編號:1843020
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1843020.html