納米多孔金屬膜基超級電容器研究
本文選題:超級電容器 + 贗電容器; 參考:《天津工業(yè)大學(xué)》2017年碩士論文
【摘要】:超級電容器由于其安全性高.功率密度大,充放電速度快和壽命長等優(yōu)點而成為儲能領(lǐng)域的研究熱點。根據(jù)儲能機理超級電容器分為兩類:雙電層電容器和贗電容電容器。雙電層電容器主要以高比表面積碳材料作為電極材料,贗電容電容器主要以具有快速氧化還原反應(yīng)的金屬氧化物和欠電位沉積的導(dǎo)電高聚物作為電極材料。由于存儲機制的不同,贗電容電容器比電容遠遠高于雙電層電容器,成為新型儲能器件。電極材料是影響贗電容器電容的主要因素。目前,對贗電容電容器電極材料的研究主要集中在具有較大應(yīng)用前景且資源豐富的過渡金屬氧化物,如 NiO,Co2O3,MnO2 等。本文研究了三明治結(jié)構(gòu)Ni20Co10Mn70//Ni//Ni20Co10Mn70復(fù)合合金箔通過脫合金-極化處理制備的復(fù)合電極的電化學(xué)性能。考察了復(fù)合板,活性層厚度和制備條件對電化學(xué)性能的影響。研究發(fā)現(xiàn):通過引入中間集流體層,NiCoMn合金基復(fù)合電極的倍率性能獲得了極大提高,當(dāng)電流密度從1 A cm~(-3)提高到7 A cm~(-3),比容量保持在80%以上,同時中間層的引入解決了納米多孔金屬脆性大,可應(yīng)用性差的缺陷,使復(fù)合電極具備了很好的柔韌性和可加工性,為自動化生產(chǎn)提供了前提條件。當(dāng)復(fù)合電極箔厚度為110 μm時,電極的比電容為686.8 F cm~(-3),能量密度可達46.59 mWh cm~(-3),較高的比容量和能量密度說明此電極具有很好的應(yīng)用前景。為進一步降低材料成本本文進一步研究了 Cu摻雜對NiCoMn合金電化學(xué)性能的影響。實驗以Ni20Co5Cu10Mn70,Ni20Co10Cu5Mn70為基體,通過電化學(xué)腐蝕和電化學(xué)極化制備出具有納米多孔結(jié)構(gòu)的電極材料。對制備的電極材料也進行了充放電,交流阻抗等電化學(xué)測試和表征。研究表明Ni20Co5Cu10Mn70基體制備的電極材料具有更好的導(dǎo)電能力和更寬的電壓窗口,但是在電流密度1 Acm~(-3)時比電容和電流密度分別為194.9F cm~(-3)和12.76m Wh cm~(-3)。np-Ni10Co5Cu5Mn70在電流密度1 cm~(-3)比電容和能量密度分別為266.5 F cm~(-3)和16.32 mWh cm~(-3)。
[Abstract]:Supercapacitors are safe because of their high safety. The advantages of high power density, fast charge and discharge speed and long life have become the research hotspot in the field of energy storage. According to the energy storage mechanism, supercapacitors can be classified into two categories: double layer capacitors and pseudo-capacitor capacitors. Double layer capacitors are mainly made of carbon materials with high specific surface area, and pseudo-capacitor capacitors are mainly made of metal oxides with rapid redox reaction and conductive polymers deposited by underpotential deposition as electrode materials. Due to the difference of storage mechanism, the specific capacitance of pseudo-capacitor capacitor is much higher than that of double-layer capacitor, so it becomes a new type of energy storage device. Electrode material is the main factor affecting the capacitance of pseudo-capacitor. At present, the research on the electrode materials of pseudo-capacitor capacitors is mainly focused on transition metal oxides, such as nio Co _ 2O _ 3, MNO _ 2 and so on, which have great application prospects and are rich in resources. The electrochemical properties of sandwich structure Ni20Co10Mn70//Ni//Ni20Co10Mn70 composite gold foil prepared by dealloying and polarization treatment were studied. The effects of the thickness of the composite plate, the thickness of the active layer and the preparation conditions on the electrochemical properties were investigated. It is found that the performance of the composite electrode based on NiCoMn alloy is greatly improved when the current density is increased from 1 A cm ~ (-1) to 7 A cm ~ (- 3), and the specific capacity of the composite electrode is maintained at more than 80% when the current density is increased from 1 A / cm ~ (-3) to 7 A / cm ~ (-3). At the same time, the introduction of interlayer solves the defects of high brittleness and poor applicability of nano-porous metal, which makes the composite electrode have good flexibility and processability, and provides the precondition for automatic production. When the thickness of the composite electrode is 110 渭 m, the specific capacitance of the electrode is 686.8 F / cm ~ (-3) and the energy density is up to 46.59 mWh / cm ~ (-3). The higher specific capacity and energy density indicate that the electrode has a good application prospect. In order to further reduce the material cost, the effect of Cu doping on the electrochemical properties of NiCoMn alloy was further studied. The electrode materials with nano-porous structure were prepared by electrochemical corrosion and electrochemical polarization using Ni20Co5Cu10Mn70 and Ni20Co10Cu5Mn70 as the substrate. The electrode materials were also characterized by charge and discharge, AC impedance and other electrochemical measurements. The results show that the electrode material prepared by Ni20Co5Cu10Mn70 substrate has better conductivity and wider voltage window. But the specific capacitance and current density are 194.9 F cm-1 and 12.76mWh cm~(-3).np-Ni10Co5Cu5Mn70 at current density 1 cm ~ (-3), respectively, and the specific capacitance and energy density are 266.5 F / cm ~ (-3) and 16.32 mWh / cm ~ (-3), respectively.
【學(xué)位授予單位】:天津工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM53
【參考文獻】
相關(guān)期刊論文 前9條
1 李四橫;劉慶鶴;齊力;逯樂慧;王宏宇;;電化學(xué)電容器中二氧化錳電極材料研究進展[J];分析化學(xué);2012年03期
2 王志勇;田樹仁;夏國明;李凱;;綠色儲能元件——超級電容的探討[J];低壓電器;2011年07期
3 孫剛偉;宋文華;劉小軍;喬文明;凌立成;;基于離子尺寸與孔徑關(guān)系的不對稱電容行為(英文)[J];物理化學(xué)學(xué)報;2011年02期
4 湯宏偉;褚彬;王蔣亮;常照榮;;納米氧化鎳的制備及超級電容性能研究[J];材料導(dǎo)報;2009年02期
5 陳英放;李媛媛;鄧梅根;;超級電容器的原理及應(yīng)用[J];電子元件與材料;2008年04期
6 胡毅;陳軒恕;杜硯;尹婷;;超級電容器的應(yīng)用與發(fā)展[J];電力設(shè)備;2008年01期
7 李勝;丁士華;梁逵;劉國標(biāo);宋天秀;羅光華;;真空燒結(jié)制備氧化鎳及其超級電容器特性的研究[J];西華大學(xué)學(xué)報(自然科學(xué)版);2007年03期
8 張寶宏,張娜;納米MnO_2超級電容器的研究[J];物理化學(xué)學(xué)報;2003年03期
9 李璐;張淮浩;;超級電容器用炭基電極材料的研究進展[J];炭素;2009年04期
相關(guān)碩士學(xué)位論文 前1條
1 高峰閣;超級電容器用聚噻吩/聚苯胺/活性炭復(fù)合電極材料的研究[D];北京化工大學(xué);2010年
,本文編號:1820515
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1820515.html