APF的無諧波檢測改進控制研究
本文選題:無諧波檢測控制 + 級聯(lián)延遲信號對消 ; 參考:《太原理工大學》2017年碩士論文
【摘要】:本文研究內(nèi)容是山西省煤基重點科技攻關項目“大規(guī)模間歇式新能源并網(wǎng)技術開發(fā)”(MD2014-06)中的子課題,針對的是新能源微電網(wǎng)中的電能質(zhì)量問題。有源電力濾波器(active power filter,APF)是電能質(zhì)量治理的重要裝置,其控制方法有諧波檢測法和無諧波檢測法兩大類。其中無諧波檢測法的控制系統(tǒng)結構簡單、計算量小,因此有更好的實時性,便于工程實現(xiàn)。但在實際工況運行中發(fā)現(xiàn),在現(xiàn)有的無諧波檢測控制法下,APF直流側電壓隨負載變化波動嚴重,這不僅減小了直流電壓利用率而且會降低APF運行的穩(wěn)定性,嚴重影響了APF的補償效果。為此,本文通過分析在無諧波檢測控制法下APF的功率轉換過程及控制模型和算法,提出了應用于APF系統(tǒng)的靜止坐標系下網(wǎng)側有功正序電流前饋控制策略,依次通過仿真和實驗對所提出的控制策略及算法進行了驗證。功率流動機理和數(shù)學模型的建立是控制系統(tǒng)設計的基礎。本文首先從APF狀態(tài)空間方程的小信號模型出發(fā),對傳統(tǒng)無諧波檢測控制法的功率變換關系進行了分析,對APF直流電壓波動的產(chǎn)生機理和交直流功率變換的原理進行了詳細的解釋;趯﹄妷-電流雙環(huán)控制機理的分析結果,認為控制中應將APF視為負載的一部分,以網(wǎng)側電能質(zhì)量為控制目標,在傳統(tǒng)無諧波檢測法的基礎上加入網(wǎng)側電流前饋算法,以減小APF的動態(tài)損耗,加快調(diào)整過程。在前饋信號產(chǎn)生環(huán)節(jié)的設計中,首先分析了前饋信號的特點和需求,據(jù)此設計了級聯(lián)延遲信號對消(cascaded delayed signal cancellation,CDSC)濾波器和電流逼近算法:一方面,基于有限長單位沖激響應(finite impulse response,FIR)濾波器設計原理和延遲信號對消(DSC)濾波器設計思想,再結合對CDSC濾波效果的分析,指出CDSC在應用于非對稱負載的情況下存在的設計問題,并通過CDSC的頻譜特性分析提出了解決方案;另一方面,結合無諧波檢測法下APF控制的網(wǎng)側電流的功率因數(shù)變化特點,提出以一種新的逼近算法代替瞬時無功的計算,不僅簡化了計算過程,同時也加快動態(tài)調(diào)整過程。本文提出的網(wǎng)側電流前饋控制算法可以降低APF系統(tǒng)的損耗,提高直流電壓的穩(wěn)定性,并優(yōu)化了負荷動態(tài)波動過程中的補償效果,減小了APF補償后的不平衡度。合理的電流環(huán)參數(shù)是整個APF補償優(yōu)化和系統(tǒng)穩(wěn)定運行的先決條件。本文在傳統(tǒng)電壓-電流雙環(huán)控制基礎上,針對比例諧振控制器的特點和實際離散算法的要求,設計了準比例諧振控制在靜止坐標系下的簡化實現(xiàn)方法,實現(xiàn)了APF的精確補償和系統(tǒng)快速響應。然后結合電壓環(huán)、電流環(huán)的動態(tài)性能及電流矢量變化過程,分析了CDSC濾波和網(wǎng)側電流逼近算法對動態(tài)調(diào)整過程的影響。最后分析了改進算法在三相四線制系統(tǒng)的應用。仿真和實驗結果均表明,本文提出的改進的無諧波檢測控制方案提高了APF的動態(tài)響應特性,有效抑制了直流電壓的波動,明顯改善了APF系統(tǒng)的運行穩(wěn)定性和補償效果。
[Abstract]:The research content is a sub topic of the key scientific and technological research project of Shanxi Province, "large-scale intermittent new energy grid technology development" (MD2014-06), aiming at the power quality problem in the new energy micro grid. Active power filter (active power filter, APF) is an important device for the power quality control, and its control method is harmonic. There are two kinds of wave detection method and non harmonic detection method, of which the control system without harmonic detection is simple in structure and small in calculation. Therefore, it has better real-time performance and is convenient for engineering implementation. But it is found in the actual operating conditions that under the existing non harmonic detection and control method, the APF DC side voltage fluctuates seriously with the load, which not only reduces the DC voltage. The voltage utilization can reduce the stability of APF operation and seriously affect the compensation effect of APF. By analyzing the power conversion process and the control model and algorithm of APF under the non harmonic detection and control method, this paper proposes a positive sequence current feedforward control strategy for the network side under the stationary coordinate system of the APF system, which is in turn through simulation. The power flow mechanism and the mathematical model are the basis of the control system design. Starting from the small signal model of the APF state space equation, the power transformation relationship of the traditional non harmonic detection control method is analyzed, and the generation of the APF DC voltage fluctuation is produced. The mechanism and the principle of AC and DC power conversion are explained in detail. Based on the analysis of the mechanism of voltage and current double loop control, it is considered that the APF should be regarded as a part of the load, and the network side electric energy quality is the control target, and the network side current feedforward algorithm is added to the traditional non harmonic detection method to reduce the dynamics of the APF. In the design of the feedforward signal production link, the characteristics and requirements of the feedforward signal are analyzed first, and the cascaded delay signal cancellation (cascaded delayed signal cancellation, CDSC) filter and the current approximation algorithm are designed, on the one hand, based on the finite unit impulse response (finite impulse response, FIR) The design principle of filter design and the design idea of delayed signal cancellation (DSC) filter and the analysis of the effect of CDSC filter, point out the design problem of CDSC in the case of asymmetric load, and propose a solution through the spectrum characteristic analysis of CDSC; on the other hand, the network side current under the APF control under the non harmonic detection method is combined with the non harmonic detection method. A new approximation algorithm is proposed to replace the instantaneous reactive power calculation, which not only simplifies the calculation process, but also speeds up the dynamic adjustment process. The network side current feedforward control algorithm proposed in this paper can reduce the loss of the APF system, improve the stability of the DC voltage, and optimize the dynamic load fluctuation process. The compensation effect reduces the imbalance degree after APF compensation. Reasonable current loop parameters are the prerequisite for the whole APF compensation optimization and the system stable operation. Based on the traditional voltage and current double loop control, this paper designed the quasi proportional resonance control in static sitting in view of the characteristics of the proportional resonant controller and the requirement of the actual discrete algorithm. The simplified realization method under the standard system realizes the precise compensation of APF and the rapid response of the system. Then the dynamic performance and current vector change process of the voltage loop, the current loop are combined, and the influence of the CDSC filtering and the network side current approximation algorithm on the dynamic adjustment process is analyzed. Finally, the application of the modified algorithm in the three-phase four wire system is analyzed. The experimental results show that the improved non harmonic detection and control scheme proposed in this paper improves the dynamic response characteristic of APF, effectively restraining the fluctuation of DC voltage, and obviously improving the operation stability and compensation effect of the APF system.
【學位授予單位】:太原理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM761;TM935
【參考文獻】
相關期刊論文 前10條
1 李蘭芳;徐曉剛;吳國兵;蔡曉燕;;并聯(lián)型APF直流側電壓的滑模PI控制策略研究[J];電力系統(tǒng)保護與控制;2017年05期
2 許德志;汪飛;阮毅;;LCL、LLCL和LLCCL濾波器無源阻尼分析[J];中國電機工程學報;2015年18期
3 姜子健;楊歡;沈建輝;曹海洋;徐興華;;基于級聯(lián)延時信號消除-鎖相環(huán)算法的配電網(wǎng)靜止同步補償器控制策略[J];電網(wǎng)技術;2015年07期
4 吳恒;楊東升;阮新波;;基于串聯(lián)信號延遲對消法的三相非理想電網(wǎng)鎖相控制策略[J];電工技術學報;2014年08期
5 徐榕;于泳;楊榮峰;徐殿國;;基于單相級聯(lián)延時信號消除法的三相基波正序有功電流檢測方法[J];電網(wǎng)技術;2014年08期
6 馮霞;鐘曉劍;徐群偉;陳國柱;;新型三相四線制APF直流電壓控制策略[J];浙江大學學報(工學版);2014年07期
7 鐘慶;黃凱;王鋼;張堯;;不對稱三相電壓下電壓源型換流器諧波分析與抑制策略[J];電力系統(tǒng)自動化;2014年04期
8 吳慧韞;吳衛(wèi)民;黃敏;Frede Blaabjerg;;LLCL型單相并網(wǎng)逆變器在不同濾波電感組合情況下的損耗計算[J];電工電能新技術;2013年03期
9 朱寧輝;白曉民;董偉杰;周子冠;;空間矢量脈寬調(diào)制下有源電力濾波器直流側電壓設定值研究[J];電網(wǎng)技術;2013年02期
10 李志勇;沈玲菲;徐保友;危韌勇;;基于無諧波檢測的LCL-APF直接功率控制[J];電網(wǎng)技術;2012年12期
,本文編號:1817622
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1817622.html