視頻識別技術(shù)在變電站中的應(yīng)用研究
本文選題:變電站 + 視頻識別 ; 參考:《華北電力大學(xué)(北京)》2017年碩士論文
【摘要】:隨著視頻監(jiān)控的編解碼技術(shù)和智能分析技術(shù)的發(fā)展,視頻監(jiān)控系統(tǒng)作為電網(wǎng)運(yùn)行、檢修的輔助監(jiān)控手段,其業(yè)務(wù)正在向智能化、高清化和網(wǎng)絡(luò)化方向發(fā)展。變電站內(nèi)數(shù)量龐大的數(shù)字儀表,單純憑借作業(yè)人員的主觀判斷和巡查方式進(jìn)行儀表讀數(shù),不僅精確度不能保證,還極大的浪費(fèi)了人力物力。另外變電站的安全問題也需要重點(diǎn)關(guān)注,如果有人員誤入或?yàn)榱巳藶槠茐哪康倪M(jìn)入重要區(qū)域,為了避免造成經(jīng)濟(jì)損失和消除安全隱患,需要及時發(fā)現(xiàn)并制止。針對上述問題論文工作對智能視頻監(jiān)控系統(tǒng)中,數(shù)字儀表識別和重要區(qū)域人員入侵檢測進(jìn)行深入研究。首先,分析并研究了國內(nèi)外智能視頻監(jiān)控、數(shù)字儀表識別和運(yùn)動目標(biāo)檢測的研究現(xiàn)狀,以及目前視頻識別的主要技術(shù)。其次,通過研究目前成熟的數(shù)字儀表識別方法,基于穿線識別法和交點(diǎn)特征提取,提出了一種改進(jìn)的數(shù)字識別方法,該方法在字符識別之前對分割得到的數(shù)字區(qū)域,從區(qū)域外接矩形的縱坐標(biāo)、面積和高度差三個方面設(shè)置若干限制條件,有效防止將噪聲區(qū)域誤判為數(shù)字區(qū)域,然后采用直線和字符的交點(diǎn)數(shù)來構(gòu)造數(shù)字0到9的識別特征,在確保準(zhǔn)確率和抗干擾性的前提下,顯著降低了計算量。最后,論文工作研究了目前主流的運(yùn)動目標(biāo)檢測方法,例如光流法、背景減除法和幀間差分法等,在此基礎(chǔ)上提出了一種改進(jìn)的二幀差分法和背景減除法相結(jié)合的運(yùn)動目標(biāo)檢測方法,該方法在二幀差分法的基礎(chǔ)上,考慮光照變化的影響,通過把背景減除法和二幀差分法的差值圖做與運(yùn)算避免了圖像序列差分法引起的“雙影”現(xiàn)象,又可以避免背景減除法將光線突變誤判為運(yùn)動目標(biāo)的情況,提高了識別準(zhǔn)確率,并能夠滿足智能監(jiān)控系統(tǒng)的實(shí)時性要求。
[Abstract]:With the development of coding and decoding technology and intelligent analysis technology of video surveillance, video surveillance system is developing to intelligent, high-definition and network as the auxiliary monitoring means of power grid operation and maintenance. A large number of digital instruments in the substation simply rely on the subjective judgment and inspection of the operator to read the instrument. It is not only the accuracy can not be guaranteed but also a great waste of manpower and material resources. In addition, the safety problems of substation also need to be paid attention to. In order to avoid the economic loss and eliminate the hidden danger of safety, it is necessary to detect and stop in time if there are personnel entering the important area by mistake or for the purpose of human destruction. In order to solve the above problems, the paper deeply studies the digital instrument recognition and the intrusion detection in important area in the intelligent video surveillance system. Firstly, the research status of intelligent video surveillance, digital instrument recognition and moving target detection at home and abroad is analyzed and studied, as well as the main technology of video recognition. Secondly, by studying the current mature digital instrument recognition methods, a modified digital recognition method is proposed based on the piercing recognition method and the intersection feature extraction method, which is used to segment the digital regions before character recognition. In order to effectively prevent the noise region from being misjudged as a digital region, the recognition features of the numbers 0 to 9 are constructed by using the number of points at the intersection of the straight line and the character to set up some limiting conditions from the three aspects of the vertical coordinate, area and height difference of the rectangle connected to the region, so as to effectively prevent the noise region from being misjudged into the digital region. On the premise of ensuring accuracy and anti-interference, the computational complexity is reduced significantly. Finally, the main methods of moving target detection, such as optical flow method, background subtraction method and inter-frame difference method, are studied. On this basis, an improved two-frame differential method combined with background subtraction method is proposed for moving target detection. Based on the two-frame difference method, the influence of illumination variation is considered. By doing and calculating the difference graph of background subtraction method and two-frame difference method, the "double shadow" phenomenon caused by the image sequence difference method is avoided, and the case that the background subtraction method misjudges the sudden change of light into moving target can be avoided, and the recognition accuracy is improved. And can meet the real-time requirements of intelligent monitoring system.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41;TM63
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 張永庫;李云峰;孫勁光;;綜合顏色和形狀特征聚類的圖像檢索[J];計算機(jī)應(yīng)用;2014年12期
2 焦圣喜;張善東;;機(jī)加工件點(diǎn)陣字符識別研究[J];河南科技;2014年05期
3 肖大雪;;淺析數(shù)學(xué)形態(tài)學(xué)在圖像處理中的應(yīng)用[J];科技廣場;2013年05期
4 郭爽;;數(shù)碼管數(shù)字儀表自動識別方法的研究[J];通信技術(shù);2012年08期
5 李靖宇;穆偉斌;金成;耿魁;張巖;;圖像分割在醫(yī)學(xué)圖像處理中的應(yīng)用研究[J];微型機(jī)與應(yīng)用;2012年08期
6 王科俊;熊新炎;任楨;;高效均值濾波算法[J];計算機(jī)應(yīng)用研究;2010年02期
相關(guān)博士學(xué)位論文 前1條
1 王棟;基于線性表示模型的在線視覺跟蹤算法研究[D];大連理工大學(xué);2013年
相關(guān)碩士學(xué)位論文 前8條
1 楊茜;高爾夫球童機(jī)器人運(yùn)動人體跟蹤方法研究[D];重慶大學(xué);2014年
2 劉文亮;七段式數(shù)顯儀表中數(shù)字識別的研究與實(shí)現(xiàn)[D];大連理工大學(xué);2013年
3 趙欽波;基于視覺監(jiān)控的目標(biāo)檢測與跟蹤技術(shù)研究[D];重慶大學(xué);2012年
4 徐步玉;基于馬爾可夫隨機(jī)場的運(yùn)動目標(biāo)檢測方法研究[D];合肥工業(yè)大學(xué);2011年
5 梁雪梅;無人值守變電站智能視頻監(jiān)測系統(tǒng)設(shè)計[D];華北電力大學(xué)(北京);2010年
6 劉利娜;手寫體字符識別的研究與應(yīng)用[D];江南大學(xué);2009年
7 張雄;基于序列圖像的運(yùn)動目標(biāo)檢測與跟蹤[D];哈爾濱理工大學(xué);2009年
8 張金鳳;變電站數(shù)字識別技術(shù)和運(yùn)動物體檢測方法的研究[D];重慶大學(xué);2008年
,本文編號:1815657
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1815657.html