基于1000kV特高壓交流輸電線(xiàn)路的電磁環(huán)境研究
本文選題:1000kV特高壓交流 + 電場(chǎng)強(qiáng)度 ; 參考:《蘭州交通大學(xué)》2017年碩士論文
【摘要】:為了實(shí)現(xiàn)能源的高效利用,逐步形成以電能為中心的能源格局,同時(shí)也應(yīng)對(duì)越來(lái)越明顯的能源資源與能源需求的逆向分布問(wèn)題等,國(guó)家正大力建設(shè)特高壓電網(wǎng)以滿(mǎn)足社會(huì)發(fā)展的需求。特高壓交流輸電設(shè)備可能產(chǎn)生的電磁危害已經(jīng)引起人們的關(guān)注與擔(dān)憂(yōu)。有許多學(xué)者對(duì)特高壓交流輸電設(shè)備可能造成的電磁輻射進(jìn)行過(guò)研究。但是,選取的特高壓交流輸電線(xiàn)路模型簡(jiǎn)單,輸電桿塔單一,與實(shí)際特高壓交流輸電工程有著較大差距;考慮特高壓交流輸電線(xiàn)路對(duì)人體的影響比較簡(jiǎn)單,多將人體看為一個(gè)求解域等;诖,本文研究現(xiàn)行較多采用的特高壓交流輸電桿塔和改進(jìn)的特高壓交流輸電桿塔線(xiàn)路附近的電磁環(huán)境變化規(guī)律,并作出電磁環(huán)境安全評(píng)估。論文基于現(xiàn)行的1000kV特高壓交流輸電工程,分析一些常見(jiàn)因素,如離地高度、相間距、線(xiàn)路分裂根數(shù)、線(xiàn)路排線(xiàn)方式、雙回路相序和計(jì)及線(xiàn)路弧垂等因素對(duì)特高壓交流輸電線(xiàn)路周?chē)ゎl電磁場(chǎng)分布的影響,同時(shí)對(duì)現(xiàn)行的1000kV特高壓交流ZMP1貓頭型輸電桿塔線(xiàn)路和采用國(guó)家電網(wǎng)一些主要研究單位提出的緊湊型輸電桿塔線(xiàn)路周?chē)ゎl電場(chǎng)和工頻磁場(chǎng)的分布情況進(jìn)行比較分析。結(jié)合國(guó)內(nèi)外權(quán)威期刊給出的人體尺寸與機(jī)體組織電磁參數(shù),同時(shí)進(jìn)行部分驗(yàn)證,構(gòu)建貼近實(shí)際的人體模型。研究1000kV特高壓交流ZMP1貓頭型和緊湊型輸電桿塔線(xiàn)路在長(zhǎng)年常見(jiàn)的天氣情況下計(jì)及實(shí)際弧垂線(xiàn)路以及經(jīng)過(guò)具有典型高度差區(qū)域的線(xiàn)路下方的人體附近和人體內(nèi)部,包括人體軀干和人體頭部的頭皮、顱骨、腦組織以及腦組織中的頭部中樞神經(jīng)系統(tǒng)等的電場(chǎng)強(qiáng)度、電流密度和磁感應(yīng)強(qiáng)度分布規(guī)律,并對(duì)幾種仿真計(jì)算結(jié)果進(jìn)行對(duì)比分析。對(duì)于電磁輻射安全,與國(guó)際通用的ICNIRP(International Commission on Non-Ionizing Radiation Protection,國(guó)際非電離輻射防護(hù)委員會(huì))導(dǎo)則中的職業(yè)人員限值和普通民眾限值標(biāo)準(zhǔn)進(jìn)行比較,作出電磁輻射安全評(píng)估,并給出防護(hù)建議。結(jié)果表明:我國(guó)目前的1000kV特高壓交流輸電線(xiàn)路,對(duì)位于其附近的人體中產(chǎn)生的電場(chǎng)強(qiáng)度、電流密度較大值部分主要集中于人體的機(jī)體組織連接處以及腿部,F(xiàn)行的ZMP1貓頭型1000kV特高壓交流輸電桿塔線(xiàn)路在人體內(nèi)產(chǎn)生的電場(chǎng)強(qiáng)度和磁感應(yīng)強(qiáng)度沒(méi)有超過(guò)ICNIRP導(dǎo)則中普通民眾限值,電流密度則在人體組織連接處與腿部存在超出ICNIRP普通民眾限值的風(fēng)險(xiǎn),但沒(méi)有超過(guò)ICNIRP導(dǎo)則中的職業(yè)人員限值。而采用緊湊型輸電桿塔的1000kV特高壓交流輸電線(xiàn)路能較大地降低在人體中產(chǎn)生的電場(chǎng)強(qiáng)度、電流密度和磁感應(yīng)強(qiáng)度。對(duì)于在1000kV特高壓交流ZMP1貓頭型輸電桿塔線(xiàn)路附近的普通民眾,應(yīng)注意對(duì)身體組織關(guān)節(jié)處以及腿部的電磁輻射防護(hù)。
[Abstract]:In order to realize the efficient use of energy and gradually form the energy pattern centered on electric energy, the reverse distribution of energy resources and energy demand is becoming more and more obvious. The country is vigorously building UHV power grids to meet the needs of social development. The possible electromagnetic hazard caused by UHV AC transmission equipment has attracted people's attention and concern. Many scholars have studied the possible electromagnetic radiation caused by UHV AC transmission equipment. However, the selected UHV AC transmission line model is simple, the transmission tower is single, and there is a big gap between the UHV AC transmission line and the actual UHV AC transmission project, and the influence of UHV AC transmission line on human body is relatively simple. Look at the human body as a solution field and so on. Based on this, this paper studies the electromagnetic environment variation law around the UHV AC transmission tower and the improved UHV AC transmission tower, and makes the electromagnetic environment safety assessment. Based on the current 1000kV UHV AC transmission project, this paper analyzes some common factors, such as height from the ground, phase spacing, line splitting root number, line arrangement, The influence of phase sequence and phase sequence of double loop on the distribution of power frequency electromagnetic field around UHV AC transmission line considering the sag of transmission line, At the same time, the distribution of power frequency electric field and power frequency magnetic field around the current 1000kV UHV AC ZMP1 cat head transmission tower line and the compact transmission tower line proposed by some main research units of State Grid are compared and analyzed. Combining the size of human body and the electromagnetic parameters of organism tissue given by authoritative journals at home and abroad at the same time some verification is carried out to construct the human body model which is close to the actual situation. In this paper, 1000kV UHV AC ZMP1 cat head and compact transmission tower lines are studied, which take into account the actual sag line and the human body under the line passing through the typical height difference area under the usual weather conditions for many years. The electric field intensity, current density and magnetic induction intensity distribution of the scalp, skull, brain tissue and the head central nervous system in the human torso and human head are included. The results of several simulation calculations are compared and analyzed. The safety of electromagnetic radiation is compared with the occupational limit in the guidelines of ICNIRP(International Commission on Non-Ionizing Radiation Protection. the International Committee on Non-Ionizing radiation Protection and the standard of limit for ordinary people. The safety of electromagnetic radiation is evaluated and some protection suggestions are given. The results show that the current density of the current 1000kV UHV AC transmission line is mainly focused on the tissue junction and the legs of the human body for the electric field intensity generated in the human body located near the current UHV AC transmission line. The current ZMP1 cat head 1000kV UHV AC transmission tower line produces no more electric field intensity and magnetic induction intensity in the human body than the ordinary people's limit in the ICNIRP guidelines. On the other hand, there is a risk that the current density will exceed the ICNIRP limit for the general public at the junction of human tissue and legs, but not above the limit for professional personnel in the ICNIRP guidelines. The 1000kV UHV AC transmission line with compact transmission tower can greatly reduce the electric field intensity, current density and magnetic induction intensity produced in human body. For the ordinary people in the vicinity of the 1000kV UHV AC ZMP1 cat head transmission tower line, the electromagnetic radiation protection should be paid attention to at the joints of the body tissue and the legs.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TM75
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 呂健雙;李健;羅超;;不均勻冰對(duì)重冰區(qū)特高壓輸電線(xiàn)路對(duì)地及交叉跨越距離的影響分析與研究[J];陜西電力;2017年03期
2 羅超;查智明;徐鵬;華雪瑩;姚為方;;1000kV特高壓交流輸電線(xiàn)路空間電磁環(huán)境的計(jì)算模型研究[J];電力科技與環(huán)保;2016年03期
3 宋衛(wèi)東;;我國(guó)與國(guó)際能源署用電量指標(biāo)對(duì)比分析[J];中國(guó)能源;2016年03期
4 方雅琪;彭勇;蘇梓銘;唐盼;劉凱;吳田;王力農(nóng);;特高壓緊湊型線(xiàn)路帶電作業(yè)人員體表電場(chǎng)仿真計(jì)算[J];中國(guó)電力;2015年10期
5 鄒岸新;徐祿文;;相序?qū)μ馗邏航涣鬏旊娋(xiàn)下工頻電磁場(chǎng)影響的仿真分析研究[J];高壓電器;2015年03期
6 王青于;楊熙;廖晉陶;王浩然;吳昊;彭宗仁;;特高壓變電站人體工頻電場(chǎng)暴露水平評(píng)估[J];中國(guó)電機(jī)工程學(xué)報(bào);2014年24期
7 石力博;羅藝霞;陳平;;工頻電場(chǎng)的職業(yè)衛(wèi)生評(píng)價(jià)[J];環(huán)境與職業(yè)醫(yī)學(xué);2014年02期
8 李文軍;周春艷;;鄂爾多斯地區(qū)典型輸變電工程環(huán)境影響分析[J];內(nèi)蒙古科技與經(jīng)濟(jì);2013年09期
9 鄧軍;肖遙;楚金偉;李立mg;趙宇明;張建功;;云南—廣東±800kV特高壓直流線(xiàn)路無(wú)線(xiàn)電干擾仿真計(jì)算與測(cè)試分析[J];高電壓技術(shù);2013年03期
10 劉振亞;;中國(guó)特高壓交流輸電技術(shù)創(chuàng)新[J];電網(wǎng)技術(shù);2013年03期
相關(guān)博士學(xué)位論文 前2條
1 肖冬萍;特高壓交流輸電線(xiàn)路電磁場(chǎng)三維計(jì)算模型與屏蔽措施研究[D];重慶大學(xué);2009年
2 牛林;特高壓交流輸電線(xiàn)路電磁環(huán)境參數(shù)預(yù)測(cè)研究[D];山東大學(xué);2008年
相關(guān)碩士學(xué)位論文 前8條
1 陳博棟;特高壓輸電線(xiàn)路電磁環(huán)境數(shù)值模擬研究[D];蘭州交通大學(xué);2015年
2 陳小燕;基于COMSOL軟件的大地電磁正演模擬[D];長(zhǎng)安大學(xué);2014年
3 王椏男;工頻電磁輻射對(duì)小學(xué)生健康指標(biāo)的影響研究[D];武漢科技大學(xué);2014年
4 王婷婷;超/特高壓輸電線(xiàn)路雷電屏蔽性能方法研究[D];重慶大學(xué);2013年
5 張永濤;基于懸鏈線(xiàn)理論的線(xiàn)纜建模和仿真研究[D];南京航空航天大學(xué);2013年
6 莊曉蕓;交流1000kV輸電線(xiàn)工頻電磁場(chǎng)與輸送功率及其影響因素研究[D];重慶大學(xué);2012年
7 程煒;特高壓輸電線(xiàn)路電磁環(huán)境的數(shù)值仿真研究[D];鄭州大學(xué);2011年
8 楊志福;220kV及110kV地下電力電纜工頻磁場(chǎng)研究[D];華北電力大學(xué)(北京);2009年
,本文編號(hào):1815337
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1815337.html