SU-8膠三維微陣列制備及碳化研究
本文選題:SU-8光刻膠 + 微型超級電容器。 參考:《太原理工大學(xué)》2017年碩士論文
【摘要】:近年來,隨著微機(jī)電系統(tǒng)(MEMS)技術(shù)的日趨成熟,可集成芯片級的儲能元件需求量日益增加。碳基微超級電容器作為最常用的雙電層原理的MEMS超級電容器,具有可集成、體積小、充放電效率高、循環(huán)性能極強(qiáng)等優(yōu)點(diǎn),成為芯片級片上元件理想的供電選擇。然而,當(dāng)前微型超級電容器能量密度的問題限制了整體的發(fā)展,提升超電容的能量密度,一般通過提升所選材質(zhì)自身的電容特性及設(shè)計(jì)具有三維電極結(jié)構(gòu)兩種方法來制備適合超電容的電極材料。MEMS領(lǐng)域經(jīng)常用于SU-8光刻膠來作為片上設(shè)備的基礎(chǔ)結(jié)構(gòu),以其特點(diǎn)適用于制備具有結(jié)構(gòu)垂直及高深寬比的體系,另外,SU-8光刻膠成分中含有大量碳環(huán)結(jié)構(gòu),成為制備碳電極材料良好的前驅(qū)體。本論文從碳化SU-8光刻膠薄膜制備多孔碳材料出發(fā),探究合適的碳化溫度和時間,同時通過摻雜、活化的方式對電極材料的電化學(xué)性能進(jìn)行改進(jìn),并設(shè)計(jì)了一種具有高比表面積的三維結(jié)構(gòu)。本論文重點(diǎn)研究的內(nèi)容如下:(1)采用一種新型的方法制備薄膜多孔碳,利用SU-8光刻膠為前驅(qū)體,當(dāng)最高溫度不同時,碳化制備出多孔碳材料,通過電容量、各項(xiàng)阻抗、循環(huán)性能等各種電化學(xué)因素綜合考慮選定相對適宜的碳化溫度及時間。為后續(xù)SU-8光刻膠作為前驅(qū)體制備芯片級超級電容器的工作奠定基礎(chǔ)。(2)借鑒上述所得結(jié)論及基本制備方法,在此基礎(chǔ)上改善電極材料自身特性,碳化摻雜檸檬酸鎂的SU-8光刻膠制備微電極。該材料同樣選取SU-8膠為前驅(qū)體,在SU-8光刻膠中物理摻入不同量的檸檬酸鎂粉末,利用熱解檸檬酸鎂產(chǎn)生的氣體以及銷碳反應(yīng)在電極材料表面產(chǎn)生更加豐富的孔隙結(jié)構(gòu),增大電極材料比表面積,從而提高其電容量,同時網(wǎng)狀孔隙結(jié)構(gòu)能易于電解液離子傳輸,減小了電荷轉(zhuǎn)移電阻。隨后,對于摻有檸檬酸鎂的光刻膠進(jìn)行基本的光刻處理,發(fā)現(xiàn)對于制備較大尺寸的電極結(jié)構(gòu)而言,這種改進(jìn)工藝對光刻基本不會產(chǎn)生影響。(3)為了進(jìn)一步提高碳化基于SU-8膠電極材料的電容特性,依照上述方法制備的電極材料存在一些不能被利用的微孔,我們通過氫氧化鉀(KOH)作為活化物質(zhì),在氮?dú)夥諊懈邷靥蓟?探究KOH摻入的最佳比例,將自制碳的孔徑大小調(diào)控至最適宜帶電離子的傳輸。最后采用摻雜30mg/ml檸檬酸鎂的SU-8光刻膠為前驅(qū)體,質(zhì)量比為1:2的KOH活化,在不同層面提升了該材料的電化學(xué)活性。(4)上述實(shí)驗(yàn)探究制備出了高性能的電極材料,我們又從電極結(jié)構(gòu)著手,目標(biāo)通過提升比表面積增加電極的能量密度。文中提出采用改進(jìn)的光刻工藝,180°對該光刻膠進(jìn)行曝光,形成累積式的叉狀陣列,為了制備穩(wěn)定的"X"型片上結(jié)構(gòu),首先通過建模計(jì)算研究最為適宜的結(jié)構(gòu)形態(tài),并通過不斷探索找到理想的工藝參數(shù),解決在光刻工藝中遇到圖案倒塌扭轉(zhuǎn)變形、叉型結(jié)構(gòu)孔洞堵塞等問題。
[Abstract]:In recent years, with the development of MEMS (Micro Electromechanical system) technology, the demand of integrated chip level energy storage components is increasing day by day. As the most commonly used double-layer MEMS supercapacitors, carbon based microcapacitors have the advantages of integration, small volume, high charge and discharge efficiency, high cycle performance and so on, so they have become the ideal power supply choice for on-chip components. However, the current problem of energy density in micro supercapacitors limits the overall development, raising the energy density of supercapacitors. Generally, by improving the capacitive characteristics of the selected materials and designing the three-dimensional electrode structure, the electrode materials, which are suitable for supercapacitors, are often used in the field of SU-8 photoresist as the basic structure of the on-chip equipment. It is suitable for the preparation of systems with vertical structure and high aspect ratio. In addition, the SU-8 photoresist contains a large amount of carbon ring structure, which makes it a good precursor for the preparation of carbon electrode materials. In this paper, the porous carbon materials were prepared by carbonized SU-8 photoresist films, and the appropriate carbonation temperature and time were explored. At the same time, the electrochemical properties of the electrode materials were improved by doping and activating. A three-dimensional structure with high specific surface area was designed. The main contents of this thesis are as follows: (1) A new method is used to prepare porous carbon film. SU-8 photoresist is used as precursor. When the highest temperature is different, porous carbon material is prepared by carbonization. A variety of electrochemical factors, such as cycling performance, were considered to determine the relatively appropriate carbonation temperature and time. To lay a foundation for the subsequent work of SU-8 photoresist as precursor to fabricate chip supercapacitor.) to draw lessons from the above conclusions and the basic preparation methods, and to improve the characteristics of electrode materials on this basis. SU-8 photoresist doped with magnesium citrate was used to prepare microelectrode. The SU-8 adhesive was also selected as the precursor, and different amount of magnesium citrate powder was added to SU-8 photoresist. The gas produced by pyrolysis of magnesium citrate and the reaction of pin carbon produced more abundant pore structure on the surface of electrode material. By increasing the specific surface area of the electrode material, the capacitance of the electrode material is increased, and the reticular pore structure can easily transport the electrolyte ions and reduce the charge transfer resistance. Subsequently, the photoresist doped with magnesium citrate was treated with basic photolithography, and it was found that for the preparation of larger electrode structure, This improved process has little effect on lithography.) in order to further improve the capacitance characteristics of carbonized electrode materials based on SU-8, there are some micropores which can not be used in the electrode materials prepared according to the above method. By using potassium hydroxide (Koh) as activator, carbonization at high temperature in nitrogen atmosphere, the optimum proportion of KOH incorporation was investigated, and the pore size of self-made carbon was regulated to be the most suitable for the transport of charged ions. Finally, the SU-8 photoresist doped with 30mg/ml magnesium citrate was used as the precursor, and the KOH was activated at 1:2 mass ratio, and the electrochemical activity of the material was enhanced at different levels. The aim is to increase the energy density of the electrode by raising the specific surface area. In this paper, an improved lithography process of 180 擄is proposed to expose the photoresist to form an accumulative fork array. In order to prepare a stable "X" on-chip structure, the most suitable structure is studied by modeling and calculation. By exploring and finding the ideal technological parameters, the problems of pattern collapse, torsional deformation and hole clogging of forked structure are solved in photolithography.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM53
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 李剛;李大維;趙清華;菅傲群;王開鷹;胡杰;桑勝波;程再軍;孫偉;;基于斜光刻技術(shù)的SU-8膠三維微陣列結(jié)構(gòu)制備[J];分析化學(xué);2016年04期
2 文春明;溫志渝;尤政;王曉峰;李東玲;尚正國;;硅基微型超級電容器三維微電極結(jié)構(gòu)制備[J];電子元件與材料;2012年05期
3 周晉;袁勛;邢偉;司維江;禚淑萍;;檸檬酸鹽為碳前驅(qū)體制備介孔炭及其在電化學(xué)電容器中的應(yīng)用(英文)[J];新型炭材料;2010年05期
4 劉春娜;;超級電容器應(yīng)用展望[J];電源技術(shù);2010年09期
5 陳英放;李媛媛;鄧梅根;;超級電容器的原理及應(yīng)用[J];電子元件與材料;2008年04期
6 杜立群;朱神渺;喻立川;;后烘溫度對SU-8光刻膠熱溶脹性及內(nèi)應(yīng)力的影響[J];光學(xué)精密工程;2008年03期
7 張曄,陳迪,張金婭,倪智萍,朱軍,劉景全;SU-8膠光刻工藝參數(shù)優(yōu)化研究[J];微細(xì)加工技術(shù);2005年03期
相關(guān)博士學(xué)位論文 前4條
1 辛國祥;碳基超級電容器電極材料的研究[D];燕山大學(xué);2015年
2 李少慧;超級電容器材料的制備及其性能研究[D];華中科技大學(xué);2015年
3 方靜;超級電容器用聚苯胺納米纖維的制備、改性和電容特性研究[D];中南大學(xué);2012年
4 王虹;金屬氧化物電化學(xué)電容器電極材料的研究[D];天津大學(xué);2009年
相關(guān)碩士學(xué)位論文 前1條
1 陳文照;氮/硫摻雜多孔碳超級電容器電極材料制備及其應(yīng)用研究[D];東華大學(xué);2016年
,本文編號:1802723
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1802723.html