鋰離子電池硅碳負(fù)極材料的制備及其脫嵌鋰性能研究
本文選題:鋰離子電池 + 負(fù)極材料 ; 參考:《大連海事大學(xué)》2017年碩士論文
【摘要】:鋰離子電池作為可以反復(fù)使用的二次電池,具有高工作電壓、高能量密度、環(huán)境友好等優(yōu)點(diǎn),被廣泛應(yīng)用在運(yùn)載工具的動(dòng)力、電子、儲能等領(lǐng)域,特別是能作為汽車動(dòng)力電源改善城市霧霾及環(huán)境污染。為獲得更好的使用性能,高能量密度的鋰離子電池成為科研工作者追求的目標(biāo)之一。開發(fā)新型高性能負(fù)極材料成為提高鋰離子電池能量密度的重要方法。來源廣泛的硅材料因其高達(dá)4200mAh/g的理論比容量,具有巨大的應(yīng)用潛力,但是反應(yīng)過程中嚴(yán)重的體積變化嚴(yán)重限制了其作為負(fù)極材料的循環(huán)性能,而碳與硅材料復(fù)合是有效的改性方法之一。本文選取微米硅作為硅源,利用機(jī)械球磨法、高溫?zé)峤夥ǖ仁侄沃苽淞怂姆N類型多種不同質(zhì)量配比的硅碳復(fù)合物。利用SEM、EDS、XRD等測試手段對材料表面形貌,成分和結(jié)構(gòu)進(jìn)行表征。通過對其進(jìn)行充放電、循環(huán)伏安以及交流阻抗測試研究其脫嵌鋰性能。首先,相比于純硅粉電極,以石墨為基體制得的不同質(zhì)量比的硅/石墨復(fù)合材料的電化學(xué)性能均有不同程度的提高。復(fù)合材料首次嵌鋰量隨硅含量的增加而增加。當(dāng)硅含量過高時(shí),循環(huán)穩(wěn)定性的提高不再明顯。石墨與硅質(zhì)量比為8:2時(shí),復(fù)合電極材料獲得了最優(yōu)的電化學(xué)性能;其次,在硅含量為復(fù)合材料總質(zhì)量20%的前提下制備的硅/石墨/無定形碳復(fù)合材料循環(huán)穩(wěn)定性隨無定形碳含量的增加而下降,質(zhì)量比為2:7:1的硅/石墨/無定形碳復(fù)合物表現(xiàn)出更優(yōu)的電化學(xué)性能;最后,以蔗糖為碳源,采用高溫?zé)峤夥ㄖ苽涞陌残凸杼紡?fù)合材料,其電化學(xué)性能與碳包覆情況密切相關(guān),蔗糖與硅質(zhì)量比為70:30的復(fù)合材料中硅顆粒被碳包覆的情況相對最好,同時(shí)也表現(xiàn)出最優(yōu)的電化學(xué)性能,以100mA/g的電流密度恒流充放電,首次放電比容量約為1400mAh/g,循環(huán)至五十次時(shí)放電比容量可以保持在340mAh/g左右。
[Abstract]:Lithium ion battery, as a reusable secondary battery, has the advantages of high working voltage, high energy density and environmental friendliness. It is widely used in the fields of power, electronics, energy storage and so on. Especially, it can be used as power supply to improve city haze and environmental pollution. In order to obtain better performance, lithium ion battery with high energy density has become one of the goals pursued by researchers. The development of new high performance anode materials has become an important method to improve the energy density of lithium ion batteries. Silicon materials from a wide range of sources have great potential for application due to their theoretical specific capacity as high as 4200mAh/g, but the serious volume changes in the reaction process seriously limit their cyclic properties as anode materials. Carbon and silicon composite is one of the effective modification methods. In this paper, four kinds of silicon / carbon composites with different mass ratios were prepared by mechanical ball milling and high temperature pyrolysis with micron silicon as silicon source. The surface morphology, composition and structure of the materials were characterized by means of SEM EDS- XRD. The performance of lithium deintercalation was investigated by charge-discharge, cyclic voltammetry and AC impedance measurements. Firstly, compared with pure silicon powder electrode, the electrochemical properties of silicon / graphite composites with different mass ratios were improved in different degrees. The content of lithium intercalation increases with the increase of silicon content for the first time. When the silicon content is too high, the improvement of cycle stability is not obvious. When the mass ratio of graphite to silicon is 8:2, the composite electrode material has the best electrochemical performance. The cyclic stability of silicon / graphite / amorphous carbon composites prepared with silicon content of 20% of the total mass of composites decreases with the increase of amorphous carbon content. The silicon / graphite / amorphous carbon composites with a mass ratio of 2:7:1 showed better electrochemical performance. Finally, the electrochemical properties of the coated silica / carbon composites prepared by high temperature pyrolysis with sucrose as carbon source were closely related to the carbon coating. When the mass ratio of sucrose to silicon is 70:30, the carbon coating of silicon particles is the best, and the optimal electrochemical performance is also shown. The current density of 100mA/g is constant current charge and discharge. The first discharge specific capacity is about 1400mAh/ g, and the discharge specific capacity can be kept at about 340mAh/g at 50 cycles.
【學(xué)位授予單位】:大連海事大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM912
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 牛津;張?zhí)K;牛越;宋懷河;陳曉紅;周繼升;;硅基鋰離子電池負(fù)極材料[J];化學(xué)進(jìn)展;2015年09期
2 趙世勇;周敏;關(guān)士友;;鋰離子電池硅基負(fù)極材料的研究進(jìn)展[J];電源技術(shù);2015年05期
3 張培新;汪靜偉;黃亮;張冬云;;鋰離子電池硅基負(fù)極材料研究現(xiàn)狀與發(fā)展趨勢[J];深圳大學(xué)學(xué)報(bào)(理工版);2014年05期
4 王毅;馬新寨;謝明樹;陳志雪;姚建英;張彥杰;畢錫鋼;;動(dòng)力鋰離子電池技術(shù)發(fā)展分析[J];電池工業(yè);2014年04期
5 閆金定;;鋰離子電池發(fā)展現(xiàn)狀及其前景分析[J];航空學(xué)報(bào);2014年10期
6 李新喜;袁曉嬌;張國慶;張新河;張磊;;鋰離子電池硅/石墨復(fù)合負(fù)極材料的制備及性能研究[J];廣東工業(yè)大學(xué)學(xué)報(bào);2014年02期
7 胡社軍;張苗;侯賢華;王潔;李敏;劉祥;;高容量型鋰離子電池硅基負(fù)極材料的研究[J];華南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年06期
8 米宏偉;吳雙泉;朱培洋;劉劍洪;;鋰離子電池硅-碳負(fù)極材料的研究進(jìn)展[J];材料導(dǎo)報(bào);2013年17期
9 張紀(jì)偉;張明媚;張麗娟;;鋰離子電池硅/碳復(fù)合負(fù)極材料研究進(jìn)展[J];電源技術(shù);2013年04期
10 褚道葆;李建;袁希梅;李自龍;魏旭;萬勇;;鋰離子電池Sn基合金負(fù)極材料[J];化學(xué)進(jìn)展;2012年08期
,本文編號:1796468
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1796468.html