基于混合儲(chǔ)能的組合電源控制策略研究
本文選題:電動(dòng)汽車 + 分布式發(fā)電 ; 參考:《東南大學(xué)》2016年碩士論文
【摘要】:二十一世紀(jì)以來(lái),世界性的能源危機(jī)日趨嚴(yán)重,節(jié)能減排技術(shù)正逐漸成為各大汽車生產(chǎn)商的主要投資方向方向。目前,采用混合動(dòng)力驅(qū)動(dòng)的新型汽車已經(jīng)開始走向千家萬(wàn)戶,電動(dòng)汽車充電技術(shù)也在不斷發(fā)展。為削弱大量快速充電站接入對(duì)配電網(wǎng)造成的沖擊,可考慮將電動(dòng)汽車充電站與分布式電源進(jìn)行一體化設(shè)計(jì),由分布式電源和電網(wǎng)共同提供充電所需能量。風(fēng)能及光伏發(fā)電等分布式電源的輸出功率具有間歇性和隨機(jī)性,而且充電負(fù)荷的變化也有著不確定性,為了解決上述問(wèn)題,需要在分布式發(fā)電系統(tǒng)中增設(shè)儲(chǔ)能裝置,為了保證系統(tǒng)內(nèi)部瞬時(shí)的能量平衡,儲(chǔ)能裝置需要頻繁地在吸收或發(fā)出功率之間切換。頻繁的大功率充放電和深度放電會(huì)造成鉛酸蓄電池溫度升高、正負(fù)極板上的活性物質(zhì)脫落等現(xiàn)象,導(dǎo)致電池容量積累性虧損并在短時(shí)間內(nèi)快速下降,嚴(yán)重影響電池的使用壽命。超級(jí)電容器與蓄電池在性能特點(diǎn)上有很強(qiáng)的互補(bǔ)性,如果將兩者混合使用,將會(huì)大大提高儲(chǔ)能裝置的性能。充電電源采用多個(gè)電源模塊并聯(lián)來(lái)滿足大功率需求。若將各個(gè)模塊直接并聯(lián),難以保證各個(gè)模塊所承擔(dān)負(fù)載電流的均衡。為改善這一問(wèn)題,在并聯(lián)充電系統(tǒng)中采用了均流技術(shù)。首先,對(duì)含有儲(chǔ)能系統(tǒng)的電動(dòng)汽車充電站的整體方案進(jìn)行了設(shè)計(jì),分析了蓄電池及超級(jí)電容的關(guān)鍵特性,以及兩者常用的幾種模型。對(duì)比了混合儲(chǔ)能系統(tǒng)與直流母線的幾種不同并聯(lián)結(jié)構(gòu),選定蓄電池及超級(jí)電容分別通過(guò)雙向DC/DC與直流母線相連接的拓?fù)浣Y(jié)構(gòu)。其次,針對(duì)蓄電池及超級(jí)電容兩種不同結(jié)構(gòu)下電路中電感、電容值進(jìn)行了設(shè)計(jì)。通過(guò)狀態(tài)空間平均法得出了雙向DC/DC變換器的小信號(hào)模型,在此基礎(chǔ)上,分別設(shè)計(jì)了雙向DC/DC變換器工作在降壓或升壓時(shí)的控制策略,在Matlab/Simulink軟件中建立了雙向DC/DC變換器的仿真模型,對(duì)所設(shè)計(jì)的控制方案進(jìn)行了驗(yàn)證。最后,對(duì)比了幾種常見的均流技術(shù),建立了后級(jí)變換器的數(shù)學(xué)模型,在此基礎(chǔ)上設(shè)計(jì)了采用三環(huán)控制的并聯(lián)均流方案。首先將控制策略轉(zhuǎn)換為平均電流控制方式,在電壓環(huán)里面增加具有較寬帶寬的電流環(huán),由于電流環(huán)響應(yīng)速度快,整個(gè)系統(tǒng)的動(dòng)態(tài)響應(yīng)時(shí)間得到初步改善;同時(shí)對(duì)均流環(huán)結(jié)構(gòu)也做了適當(dāng)改進(jìn),將均流信號(hào)與電壓誤差信號(hào)同時(shí)作為電感電流調(diào)節(jié)的基準(zhǔn)信號(hào)。均流環(huán)在電壓環(huán)的里面,帶寬較窄的問(wèn)題得以解決,動(dòng)態(tài)性能進(jìn)一步得到提升,負(fù)載產(chǎn)生突變時(shí),能迅速對(duì)各個(gè)模塊的輸出電流做出調(diào)整,避免某些模塊出現(xiàn)過(guò)流。文中采用該種均流方案進(jìn)行研究分析。在仿真軟件中搭建了充電電源的并聯(lián)均流模型,對(duì)其均流效果進(jìn)行仿真分析,驗(yàn)證了所設(shè)計(jì)三環(huán)控制方案在全橋變換器并聯(lián)運(yùn)行時(shí)的有效性。
[Abstract]:Since twenty-first Century, the world energy crisis, energy saving and emission reduction technology is becoming the main investment direction of major automobile manufacturers direction. At present, the new hybrid vehicle drive has begun to thousands of households, technology is also in the continuous development of electric vehicle charging. In order to reduce the large fast charging station access to the distribution network caused by the impact and consider the electric vehicle charging station and distributed power supply integrated design provided by the distributed power and power required for charging energy. The output power of wind and photovoltaic distributed power supply is intermittent and randomness, and the charging load changes also have uncertainty, in order to solve the problem, need storage device add in the distributed generation system, in order to ensure the energy balance within the system transient, energy storage devices require frequent in absorption or A power switch. High power charge discharge and depth of discharge frequently will cause the lead-acid battery temperature, active material of positive and negative plates on the off phenomenon, resulting in the accumulation of battery capacity loss in a short time and rapid decline, serious impact on battery life. Super capacitor and battery are highly complementary in the performance characteristics, if the two mixed use, will greatly improve the performance of energy storage device. The charging power supply adopts a plurality of power supply modules in parallel to meet the power demand. If the modules are directly connected in parallel, it is difficult to guarantee each module for load current equilibrium. In order to improve this problem, the system adopts parallel charging the current sharing technology. First of all, on the electric vehicle charging system with energy storage station scheme is designed, analyzed the key characteristics of the battery and super capacitor, and the two Several commonly used model. Comparison of the hybrid energy storage system with different DC bus parallel structure, the topological structure of selected battery and super capacitor are connected respectively with DC bus through bi-directional DC/DC. Secondly, according to the two inductor circuit under different structure in the battery and super capacitor, the capacitance of the small signal model of two-way design. DC/DC converter through the state space average method, on this basis, designed control strategy for bi-directional DC/DC converter working in buck or boost when, in the Matlab/Simulink software simulation model of bidirectional DC/DC converter is established, the control scheme design is verified. Finally, compared the current sharing technology several common, mathematical model is established after converter, on the basis of the design of the parallel control flow scheme. First the control strategy for peace Average current mode control, current loop increases with wide bandwidth in the voltage loop, current loop with fast response speed, dynamic response time of the whole system has been improved; at the same time on the current loop structure also made the appropriate improvement, the flow signal and the voltage error signal at the same time as the inductor current regulation reference signal current loop in the voltage loop. It can solve the problem of narrow bandwidth, dynamic performance is further improved, the load generated mutation, can quickly output current of each module to make adjustments, avoid some module over-current. In this paper the current sharing scheme is studied in this paper. In the simulation software to build the parallel charging power supply is on the flow model, flow effect simulation analysis, verify the validity of the designed control scheme in the parallel full bridge converter operation.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TM53;TM46
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李誥家;;國(guó)內(nèi)外電動(dòng)汽車發(fā)展現(xiàn)狀及我市發(fā)展前景[J];中國(guó)科技信息;2015年02期
2 張冬明;;新能源汽車推廣應(yīng)用相關(guān)政策及趨勢(shì)分析[J];汽車工業(yè)研究;2015年01期
3 桑丙玉;陶以彬;鄭高;胡金杭;俞斌;;超級(jí)電容-蓄電池混合儲(chǔ)能拓?fù)浣Y(jié)構(gòu)和控制策略研究[J];電力系統(tǒng)保護(hù)與控制;2014年02期
4 李凌云;任斌;;我國(guó)鋰離子電池產(chǎn)業(yè)現(xiàn)狀及國(guó)內(nèi)外應(yīng)用情況[J];電源技術(shù);2013年05期
5 陸治國(guó);祝萬(wàn)平;劉捷豐;吳春軍;趙麗麗;;一種新型交錯(cuò)并聯(lián)雙向DC/DC變換器[J];中國(guó)電機(jī)工程學(xué)報(bào);2013年12期
6 賈志軍;宋士強(qiáng);王保國(guó);;液流電池儲(chǔ)能技術(shù)研究現(xiàn)狀與展望[J];儲(chǔ)能科學(xué)與技術(shù);2012年01期
7 李瑞生;王曉雷;周逢權(quán);李獻(xiàn)偉;;靈巧潮流控制的電動(dòng)汽車智能化充電站[J];電力系統(tǒng)保護(hù)與控制;2010年21期
8 李霄;胡長(zhǎng)生;劉昌金;徐德鴻;;基于超級(jí)電容儲(chǔ)能的風(fēng)電場(chǎng)功率調(diào)節(jié)系統(tǒng)建模與控制[J];電力系統(tǒng)自動(dòng)化;2009年09期
9 王成悅;張興;楊淑英;謝震;;電動(dòng)汽車對(duì)稱半橋DC/DC變換器的建模和控制[J];電力電子技術(shù);2008年10期
10 陳新琪;李鵬;胡文堂;徐嘉龍;朱炯;張鵬飛;;電動(dòng)汽車充電站對(duì)電網(wǎng)諧波的影響分析[J];中國(guó)電力;2008年09期
相關(guān)博士學(xué)位論文 前2條
1 杜煒;基于數(shù)字控制器的多相并聯(lián)Buck變換器的建模與研究[D];中國(guó)礦業(yè)大學(xué)(北京);2011年
2 唐西勝;超級(jí)電容器儲(chǔ)能應(yīng)用于分布式發(fā)電系統(tǒng)的能量管理及穩(wěn)定性研究[D];中國(guó)科學(xué)院研究生院(電工研究所);2006年
相關(guān)碩士學(xué)位論文 前4條
1 王嘉誠(chéng);中國(guó)新能源汽車產(chǎn)業(yè)發(fā)展分析[D];上海師范大學(xué);2012年
2 李秀亮;電動(dòng)車用鋰離子電池組的監(jiān)測(cè)與SOC估算研究[D];哈爾濱工業(yè)大學(xué);2011年
3 楊娟;基于數(shù)字控制的雙向DC/DC儲(chǔ)能變流器的研究[D];華北電力大學(xué)(北京);2011年
4 柴慶冕;超級(jí)電容器儲(chǔ)能系統(tǒng)充放電控制策略的研究[D];北京交通大學(xué);2010年
,本文編號(hào):1761491
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1761491.html