天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 電氣論文 >

碳基超級(jí)電容器一致性制備與性能研究

發(fā)布時(shí)間:2018-04-13 14:13

  本文選題:超級(jí)電容器 + 綠色能源。 參考:《太原理工大學(xué)》2017年碩士論文


【摘要】:能源是人類(lèi)賴(lài)以生存的基礎(chǔ),隨著科技、人類(lèi)生活以及生產(chǎn)活動(dòng)的高速發(fā)展,能源的需求量越來(lái)越大。傳統(tǒng)能源(尤其是化石類(lèi)原料和燃料)因開(kāi)采或利用而引起的環(huán)境問(wèn)題日益凸顯。尋找新的可再生替代能源是維持人類(lèi)可持續(xù)發(fā)展的唯一途徑,如何提高能源的利用效率?如何最大限度地利用低品位能源?一直是眾多科學(xué)家研究的重點(diǎn)課題。隨著太陽(yáng)能、風(fēng)能和海洋能等間歇性綠色能源的發(fā)展,儲(chǔ)能技術(shù)在工業(yè)節(jié)能和新能源利用領(lǐng)域日益受到關(guān)注。儲(chǔ)能技術(shù)是能源科學(xué)技術(shù)中的重要分支,可解決能量供求方面時(shí)間與空間不匹配的問(wèn)題,從而可作為提高能源利用效率的有效手段。超級(jí)電容器作為一種介于傳統(tǒng)物理電容器和電池之間的一種新型儲(chǔ)能器件,具有充放電速度快、對(duì)環(huán)境無(wú)污染、循環(huán)壽命長(zhǎng)等優(yōu)點(diǎn),有希望成為本世紀(jì)新型綠色能源。電極材料和電解液是超級(jí)電容器的主要組成部分,同時(shí)也是制約超級(jí)電容器性能的兩大關(guān)鍵因素,電極材料性能直接決定了超級(jí)電容器輸出性能的高低,電解液決定超級(jí)電容器的工作電壓,同時(shí)兩者的匹配性能也至關(guān)重要;钚蕴渴菓(yīng)用最廣的電極材料,而有機(jī)電解液常用于商用超級(jí)電容器。本論文針對(duì)超級(jí)電容器電極材料、電解液等因素對(duì)超級(jí)電容器電化學(xué)性能的影響進(jìn)行分析,通過(guò)一致性研究,制備了低內(nèi)阻、高容量、穩(wěn)定性高的超級(jí)電容器,通過(guò)電化學(xué)工作站及Land電池測(cè)試儀分析了活性炭超級(jí)電容器及石墨烯/活性炭超級(jí)電容器的性能。研究結(jié)果表明:(1)超級(jí)電容器一致性制備研究。通過(guò)嚴(yán)格控制制備工藝流程,包括極片尺寸、加壓壓力,電極片在電解液浸泡時(shí)間,從中獲得最優(yōu)制備工藝:極片直徑14 mm,不加壓,極片在電解液抽真空后浸泡60 h,再次抽真空后繼續(xù)浸泡12 h。一致性制備提高超級(jí)電容器性能的同時(shí),減小了超級(jí)電容器實(shí)驗(yàn)數(shù)據(jù)的差異。(2)超級(jí)電容器的性能與活性炭比表面積、孔徑分布有密切關(guān)系,尤其是粒徑一致性、孔徑分布范圍決定超級(jí)電容器循環(huán)穩(wěn)定性。不同電解液適合不同的電極材料,四氟硼酸雙吡咯螺環(huán)季銨鹽/碳酸丙烯酯(SBP-BF4/PC)適應(yīng)于富含介孔、微孔的材料,如電容炭、韓國(guó)活性炭等,而四氟硼酸四乙基銨鹽/碳酸丙烯酯(TEA-BF4/PC)更適應(yīng)孔徑在微介孔(2 nm左右)的材料,如日本可樂(lè)麗50F、80F等。(3)石墨烯能夠顯著提高活性炭超級(jí)電容器性能。石墨烯具有獨(dú)特的二維空間結(jié)構(gòu),良好的導(dǎo)電性能,石墨烯添加到80F活性炭超級(jí)電容器中充當(dāng)導(dǎo)電劑,電荷轉(zhuǎn)移電阻減小,比容量高達(dá)137.5 F·g-1,是純80F活性炭超級(jí)電容器的1.23倍。然而由于存在贗電容導(dǎo)致的化學(xué)反應(yīng),內(nèi)阻增大,超級(jí)電容器循環(huán)穩(wěn)定性有所降低,提高制備石墨烯的純度有利于提高超級(jí)電容器循環(huán)穩(wěn)定性。
[Abstract]:Energy is the basis of human survival. With the rapid development of science and technology, human life and production activities, the demand for energy is increasing.Environmental problems caused by exploitation or utilization of traditional energy sources (especially fossil materials and fuels) have become increasingly prominent.Finding new renewable alternative energy is the only way to maintain the sustainable development of human beings. How to improve the efficiency of energy use?How to maximize the use of low-grade energy?It has been the focus of many scientists.With the development of intermittent green energy, such as solar energy, wind energy and oceanic energy, energy storage technology has been paid more and more attention in the field of industrial energy saving and new energy utilization.Energy storage technology is an important branch of energy science and technology, which can solve the problem of time and space mismatch in energy supply and demand, thus it can be used as an effective means to improve the efficiency of energy use.As a new type of energy storage device between traditional physical capacitors and batteries, supercapacitors have the advantages of fast charge and discharge speed, no pollution to the environment, long cycle life and so on. It is expected to become a new type of green energy in this century.Electrode materials and electrolyte are the main components of supercapacitors, and also the two key factors that restrict the performance of supercapacitors. The performance of electrode materials directly determines the output performance of supercapacitors.Electrolyte determines the working voltage of supercapacitors and their matching performance is also very important.Activated carbon is the most widely used electrode material, and organic electrolyte is often used in commercial supercapacitors.In this paper, the effects of electrode materials and electrolyte on the electrochemical performance of supercapacitors are analyzed. The supercapacitors with low internal resistance, high capacity and high stability are prepared by consistency study.The properties of activated carbon supercapacitors and graphene / activated carbon supercapacitors were analyzed by electrochemical workstation and Land battery tester.The results show that: 1) the consistency of supercapacitors is studied.By strictly controlling the preparation process, including electrode size, pressure, electrode plate immersion time in the electrolyte, the optimal preparation process is obtained: the diameter of the electrode is 14 mm, the electrode is not pressurized,The electrode was immersed in the electrolyte for 60 hours after vacuum, and then continued to soak for 12 hours.The properties of supercapacitors were improved while the difference of experimental data was reduced. 2) the properties of supercapacitors were closely related to the specific surface area and pore size distribution of activated carbon, especially the consistency of particle size.The range of pore size distribution determines the cycle stability of supercapacitor.Different electrolytes are suitable for different electrode materials. Tetrafluoroboric acid bispyrrole spirocyclic quaternary ammonium salt / propylene carbonate SBP-BF4 / PC) is suitable for materials rich in mesoporous and microporous materials, such as capacitor carbon, Korean activated carbon, etc.Tetrafluoroborate tetraethyl ammonium salt / propylene carbonate TEA-BF4 / PC) is more suitable for materials with micromesoporous pore size of about 2 nm, such as Japanese cola 50F, 80F, etc.) graphene can significantly improve the performance of activated carbon supercapacitors.Graphene has a unique two-dimensional space structure and good conductivity. Graphene is added to 80F activated carbon supercapacitor as a conductive agent, the charge transfer resistance is reduced and the specific capacity is up to 137.5 F g-1, which is 1.23 times as high as that of pure 80F activated carbon supercapacitor.However, due to the chemical reaction caused by pseudo-capacitance, the internal resistance increases, and the cycle stability of supercapacitor is decreased. Therefore, improving the purity of graphene preparation is beneficial to improve the cyclic stability of supercapacitor.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TM53

【參考文獻(xiàn)】

相關(guān)期刊論文 前9條

1 劉雙宇;鞏學(xué)海;徐麗;盛鵬;陳新;韓鈺;王博;趙廣耀;劉海鎮(zhèn);;介孔碳/石墨烯復(fù)合材料的制備及在超級(jí)電容器中的應(yīng)用[J];硅酸鹽學(xué)報(bào);2017年02期

2 李雪芹;常琳;趙慎龍;郝昌龍;陸晨光;朱以華;唐智勇;;基于碳材料的超級(jí)電容器電極材料的研究[J];物理化學(xué)學(xué)報(bào);2017年01期

3 周宏明;孫文佼;李薦;;Preparation of spiro-type quaternary ammonium salt via economical and efficient synthetic route as electrolyte for electric double-layer capacitor[J];Journal of Central South University;2015年07期

4 余麗麗;朱俊杰;趙景泰;;超級(jí)電容器的現(xiàn)狀及發(fā)展趨勢(shì)[J];自然雜志;2015年03期

5 鄭冬芳;賈夢(mèng)秋;徐斌;張浩;曹高萍;楊裕生;;高性能超級(jí)電容器用高比表面積、層次孔結(jié)構(gòu)炭材料的簡(jiǎn)便制備(英文)[J];新型炭材料;2013年02期

6 龔迎莉;楊銳明;禚玉群;;CE-440型元素分析儀測(cè)定有機(jī)樣品中的碳?xì)涞猍J];分析儀器;2012年01期

7 王琴;李建玲;高飛;李文生;武克忠;王新東;;超級(jí)電容器用聚苯胺/活性炭復(fù)合電極的研究(英文)[J];新型炭材料;2008年03期

8 劉亞菲;胡中華;許琨;鄭祥偉;高強(qiáng);;活性炭電極材料的表面改性和性能[J];物理化學(xué)學(xué)報(bào);2008年07期

9 陳英放;李媛媛;鄧梅根;;超級(jí)電容器的原理及應(yīng)用[J];電子元件與材料;2008年04期

,

本文編號(hào):1744866

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1744866.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)868a6***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com