三相PWM整流器的高性能控制
本文選題:PWM整流器 切入點:特定諧波消除 出處:《北方工業(yè)大學》2017年碩士論文
【摘要】:三相電壓型PWM整流器具有網側電流正弦化、可以工作在單位功率因數(shù)下且直流側電壓可調、脈動小等優(yōu)點。隨著科學技術的飛速發(fā)展,人們對電能質量的要求也變得越來越高,對于開關損耗小、諧波含量低的PWM整流器的控制技術的研究是很有必要的。因此低開關頻率下的諧波消除技術受到了人們的重視。特定諧波消除法是一種基于低頻下實現(xiàn)特定次諧波消除的技術。本文主要針對該技術進行細致研究。首先建立了基于三相PWM整流器的特定諧波消除數(shù)學模型,得到了一組非線性方程組,通過對非線性方程組的求解得到開關角。本文采用牛頓同倫算法對非線性方程組進行求解,該算法具有牛頓法收斂高精度和同倫算法收斂范圍大的優(yōu)點。其次,對基于SHE-PWM的電網電壓定向控制策略進行了研究。該方法基于兩相旋轉坐標系進行,通過電流前饋解耦控制,使有功電流和無功電流獨立控制;通過電流諧波補償?shù)姆椒?使電流反饋中只含有基波電流,從而降低了電流內環(huán)的調節(jié)難度。該方法可以實現(xiàn)特定次諧波消除的目的,穩(wěn)態(tài)性能較SVPWM好,但動態(tài)響應速度慢。最后本文采用特定諧波消除法與模型預測控制結合的方法(SHE-MPC)對三相電壓型PWM整流器進行閉環(huán)控制。目標函數(shù)由網側電流誤差和SHE參考電壓跟蹤誤差兩部分組成,可同時兼顧動態(tài)電流跟蹤性能和穩(wěn)態(tài)電流諧波特性。傳統(tǒng)SHE-MPC控制方法采用無濾波參考電流法計算SHE參考電壓,整流器開關過程產生的高頻諧波會反饋回控制系統(tǒng),使SHE參考電壓波形失真,穩(wěn)態(tài)網側電流出現(xiàn)5、7等非理想的低次諧波。本文提出了一種通過對實際電流諧波進行補償來計算SHE參考電壓的方法,可有效濾除實際網側電流中的開關紋波,從而穩(wěn)定SHE參考電壓波形。由仿真結果可知,采用實際電流諧波補償SHE-MPC控制,穩(wěn)態(tài)時,網側電流中的非理想低次諧波基本消除,穩(wěn)態(tài)電流總諧波失真(THD)和動態(tài)響應速度性能較優(yōu)。
[Abstract]:Three-phase voltage source PWM rectifier has the advantages of sinusoidal current in grid side, adjustable DC voltage and low pulsation under unit power factor. With the rapid development of science and technology, the demand for power quality is becoming higher and higher. For small switching losses, It is necessary to study the control technology of PWM rectifier with low harmonic content. Therefore, the harmonic elimination technology at low switching frequency has been paid more attention to. The special harmonic elimination method is based on the realization of specific subharmonic at low frequency. This paper mainly studies the technology of wave cancellation. Firstly, the mathematical model of special harmonic elimination based on three-phase PWM rectifier is established. A set of nonlinear equations is obtained, and the switching angle is obtained by solving the nonlinear equations. In this paper, Newton homotopy algorithm is used to solve the nonlinear equations. The algorithm has the advantages of high precision convergence of Newton method and large convergence range of homotopy algorithm. Secondly, the voltage oriented control strategy based on SHE-PWM is studied. The method is based on two-phase rotating coordinate system and is controlled by current feedforward decoupling control. The active current and reactive current are controlled independently, and by the method of current harmonic compensation, there is only fundamental current in the current feedback, which reduces the difficulty of adjusting the inner loop of current. This method can realize the purpose of eliminating the special harmonic wave. The steady-state performance is better than that of SVPWM. But the dynamic response speed is slow. In the end, the closed-loop control of three-phase voltage-source PWM rectifier is carried out by using the method of special harmonic elimination and model predictive control. The objective function is derived from the error of current on the grid side and the reference voltage of SHE. The trace error is composed of two parts, Both dynamic current tracking performance and steady current harmonic characteristics can be taken into account. The traditional SHE-MPC control method uses the unfiltered reference current method to calculate the SHE reference voltage, and the high frequency harmonics generated in the switching process of the rectifier will be fed back to the control system. This paper presents a method to calculate the reference voltage of SHE by compensating the harmonic of the actual current, which causes the distortion of the SHE reference voltage waveform and the non-ideal low-order harmonics, such as 5 / 7 of the steady-state grid-side current. The switching ripple in the actual grid side current can be effectively filtered and the SHE reference voltage waveform can be stabilized. From the simulation results, it can be seen that the SHE-MPC control is compensated by the actual current harmonics. In the steady state, the non-ideal low-order harmonics in the grid-side current are basically eliminated. The steady-state total harmonic distortion (THD) and dynamic response speed are better.
【學位授予單位】:北方工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM461
【參考文獻】
相關期刊論文 前10條
1 程啟明;程尹曼;薛陽;胡曉青;王映斐;;三相電壓源型PWM整流器控制方法的發(fā)展綜述[J];電力系統(tǒng)保護與控制;2012年03期
2 景利學;蘇宏升;侯莉;杜榮茂;袁超;;三相電壓型PWM整流器直接功率控制策略研究[J];電工電氣;2011年09期
3 張鋼;劉志剛;沈茂盛;刁利軍;;組合式變流器錯時矢量調制技術及并聯(lián)控制方案[J];北京交通大學學報;2008年02期
4 鄭春芳;張波;丘東元;;基于對稱多項式理論及吳方法求解逆變器選擇性消諧多項式[J];控制理論與應用;2007年03期
5 費萬民;阮新波;張艷莉;居榮;;多電平逆變器特定諧波消除脈寬調制方法的初值問題研究[J];中國電機工程學報;2007年13期
6 張永昌;趙爭鳴;張穎超;;三電平逆變器SHEPWM多組解特性比較及實驗[J];電工技術學報;2007年03期
7 薛鵬騫;王久和;薛偉寧;;電壓型PWM整流器直接功率控制系統(tǒng)設計[J];遼寧工程技術大學學報;2006年05期
8 伍小杰;羅悅華;喬樹通;;三相電壓型PWM整流器控制技術綜述[J];電工技術學報;2005年12期
9 鄭春芳,張波;吳方法在電力電子逆變器消諧技術中的應用[J];中國電機工程學報;2005年15期
10 楊維,李歧強;粒子群優(yōu)化算法綜述[J];中國工程科學;2004年05期
相關博士學位論文 前2條
1 鄭忠玖;三相電壓型PWM整流器控制策略及應用研究[D];大連理工大學;2011年
2 李玉玲;電流型PWM整流器及其控制策略的研究[D];浙江大學;2006年
相關碩士學位論文 前4條
1 章勤;PWM整流器模型預測電流控制和LCL濾波技術研究[D];北方工業(yè)大學;2015年
2 劉坤;PWM整流器控制策略的研究[D];北方工業(yè)大學;2009年
3 夏秋實;基于智能優(yōu)化算法的三電平逆變器SHEPWM調制方法研究[D];合肥工業(yè)大學;2008年
4 徐超;特定諧波消除技術中方程組快速求解研究[D];東北電力大學;2007年
,本文編號:1698911
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1698911.html