適用于直流微網(wǎng)的動態(tài)電壓恢復器研究
本文選題:直流微電網(wǎng) 切入點:直流動態(tài)電壓恢復器 出處:《上海電力學院》2017年碩士論文
【摘要】:直流微電網(wǎng)作為連接分布式電源和電網(wǎng)的一種方式,重構能力強,電能質量高,能夠高效的利用分布式能源,是未來分布式發(fā)電應用的一種趨勢。在電能質量問題及其治理方面,直流微電網(wǎng)作為新型低壓直流配電網(wǎng),擁有諸多新特點,其中電壓暫降、跌落和驟升問題是當前直流微電網(wǎng)中常出現(xiàn)的電能質量問題,影響日常用電,需采取有效措施,維持微電網(wǎng)的穩(wěn)定運行,保證負荷供電質量。本文總結了當前直流微電網(wǎng)系統(tǒng)結構、電壓等級等基本特征,直流微電網(wǎng)中存在的電壓暫降、跌落等電能質量問題,以及當前國內外低壓直流配電系統(tǒng)的直流電能質量標準和電能質量問題的治理措施。在深入研究當前交流微電網(wǎng)動態(tài)電壓恢復器的基礎上,提出適用于直流微電網(wǎng)的直流動態(tài)電壓恢復器,改善直流微電網(wǎng)電壓質量。基于直流系統(tǒng)的特點,本文設計的單向直流動態(tài)電壓恢復器拓撲采用隔離型高頻直—交—直結構,能夠實現(xiàn)大范圍電壓跌落補償,提高系統(tǒng)的安全性,減小設備的體積。針對單向直流動態(tài)電壓恢復器的隔離型高頻直—交—直拓撲結構,本文研究了直流電壓檢測算法、電壓補償法,以及系統(tǒng)控制器的控制算法,其中電壓檢測算法采用基于外推預測的直流電壓檢測算法,可提升系統(tǒng)的動態(tài)響應速度;電壓補償法采用直流電壓全補償法;控制器采用基于有源阻尼的電壓環(huán)、電流環(huán)雙閉環(huán)比例積分控制,保證了系統(tǒng)的響應速度和輸出的穩(wěn)態(tài)精度,系統(tǒng)動態(tài)和穩(wěn)態(tài)特性較好。在MATLAB/Simulink軟件平臺上搭建了單向直流動態(tài)電壓恢復器的仿真模型,并基于DSPACE1005控制器搭建了2kW的實驗平臺,最終的仿真和實驗結果驗證了拓撲的正確性和控制算法的有效性。最后,本文在單向直流動態(tài)電壓恢復器拓撲的基礎上進行改進,提出雙向直流動態(tài)電壓恢復器,解決直流微電網(wǎng)的電壓驟升、電壓暫降和跌落等問題;谕負湓O計了相應的電壓檢測、判斷算法,以及控制器的復合控制算法。并在MATLAB/Simulink軟件平臺中搭建了仿真模型,驗證所提理論的正確性。
[Abstract]:As a way of connecting distributed generation and power grid, DC microgrid has strong reconfiguration ability, high power quality, and can utilize distributed energy efficiently. As a new type of low-voltage DC distribution network, DC microgrid has many new characteristics, including voltage sag. The problem of drop and sudden rise is a common power quality problem in the current DC microgrid, which affects the daily electricity consumption, so it is necessary to take effective measures to maintain the stable operation of the microgrid. This paper summarizes the basic characteristics of the current DC microgrid system, such as the structure of the DC microgrid system, voltage grade, and other power quality problems such as voltage sag and voltage sag in the DC microgrid. And the current domestic and foreign low-voltage DC distribution system DC power quality standards and power quality measures. Based on in-depth study of the current AC microgrid dynamic voltage restorer, A DC dynamic voltage restorer suitable for DC microgrid is proposed to improve the voltage quality of DC microgrid. Based on the characteristics of DC system, the unidirectional DC dynamic voltage restorer designed in this paper adopts the isolated high-frequency direct-AC structure. It can realize wide range voltage drop compensation, improve the security of the system and reduce the volume of the equipment. In this paper, the DC voltage detection algorithm is studied for the isolated high-frequency direct-AC direct topology of unidirectional DC dynamic voltage restorer. Voltage compensation method and control algorithm of system controller, in which the voltage detection algorithm adopts DC voltage detection algorithm based on extrapolation prediction, which can improve the dynamic response speed of the system, the voltage compensation method adopts DC voltage full compensation method, and the voltage detection algorithm adopts the DC voltage detection algorithm based on extrapolation prediction. The controller adopts voltage loop based on active damping and double closed loop proportional integral control of current loop, which ensures the response speed of the system and the steady-state precision of the output. The simulation model of unidirectional DC dynamic voltage restorer is built on MATLAB/Simulink software platform, and the experimental platform of 2kW is built based on DSPACE1005 controller. The simulation and experimental results show the correctness of the topology and the effectiveness of the control algorithm. Finally, based on the topology of the unidirectional DC dynamic voltage restorer, a bidirectional DC dynamic voltage restorer is proposed. In order to solve the problems of voltage sudden rise, voltage sag and drop in DC microgrid, the corresponding voltage detection, judgement algorithm and controller compound control algorithm are designed based on topology, and the simulation model is built in the MATLAB/Simulink software platform. Verify the correctness of the proposed theory.
【學位授予單位】:上海電力學院
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM761.12
【參考文獻】
相關期刊論文 前10條
1 陳鵬偉;肖湘寧;陶順;;直流微網(wǎng)電能質量問題探討[J];電力系統(tǒng)自動化;2016年10期
2 張碧涵;尹忠東;趙海森;;低壓直流供電系統(tǒng)的電能質量綜合評估[J];電力建設;2016年05期
3 李霞林;郭力;王成山;李運帷;;直流微電網(wǎng)關鍵技術研究綜述[J];中國電機工程學報;2016年01期
4 王丹;柳依然;梁翔;毛承雄;陸繼明;;直流配電網(wǎng)電壓等級序列研究[J];電力系統(tǒng)自動化;2015年09期
5 雍靜;晏小龍;曾禮強;;電壓間諧波對緊湊型熒光燈光閃變效應的實驗研究[J];電工技術學報;2015年08期
6 李智誠;和敬涵;王小君;Tony Yip;;直流微電網(wǎng)的故障分析與保護配置研究[J];北京交通大學學報;2015年02期
7 文波;秦文萍;韓肖清;王鵬;劉家贏;;基于電壓下垂法的直流微電網(wǎng)混合儲能系統(tǒng)控制策略[J];電網(wǎng)技術;2015年04期
8 馬聰;高峰;田昊;何國慶;李光輝;;適用于并網(wǎng)系統(tǒng)低電壓穿越的電壓檢測算法[J];電力系統(tǒng)自動化;2015年05期
9 張海玉;劉闖;晁勤;希望·阿布都瓦依提;李育強;劉清貴;;具有LVRT能力的并網(wǎng)光伏系統(tǒng)繼電保護問題研究[J];電力系統(tǒng)保護與控制;2015年03期
10 范柱烽;畢大強;任先文;薛騰磊;陳宇剛;;光儲微電網(wǎng)的低電壓穿越控制策略研究[J];電力系統(tǒng)保護與控制;2015年02期
相關碩士學位論文 前2條
1 凌飛;高頻無極燈諧振逆變器建模與諧振環(huán)參數(shù)設計[D];東北大學;2011年
2 張名龍;基于dSPACE的PWM整流器的研究[D];東華大學;2010年
,本文編號:1690929
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1690929.html