風(fēng)力機(jī)與直接空冷系統(tǒng)耦合的數(shù)值模擬研究
本文選題:風(fēng)力機(jī) 切入點(diǎn):直接空冷系統(tǒng) 出處:《華北電力大學(xué)(北京)》2016年碩士論文
【摘要】:在我國(guó)北方“富煤缺水多風(fēng)”地區(qū),風(fēng)力發(fā)電技術(shù)與直接空冷系統(tǒng)應(yīng)用十分廣泛。環(huán)境風(fēng)會(huì)顯著影響空冷凝汽器的換熱性能。空氣流過(guò)風(fēng)力機(jī)流速會(huì)降低,通過(guò)風(fēng)力機(jī)和空冷島耦合運(yùn)行,提高空冷島性能并減少?gòu)S用電率,實(shí)現(xiàn)能源的優(yōu)化利用。本文采用數(shù)值模擬的方法,研究了在空冷島外部布置風(fēng)力機(jī)對(duì)空冷凝汽器流動(dòng)傳熱性能的影響。首先,根據(jù)動(dòng)量葉素理論建立了三維實(shí)體風(fēng)力機(jī)模型,模擬驗(yàn)證了模型的可用性,并得到了風(fēng)力機(jī)在設(shè)計(jì)風(fēng)速時(shí)尾流流場(chǎng)的變化規(guī)律;建立了三維實(shí)體風(fēng)力機(jī)與空冷島耦合模型,在側(cè)面來(lái)風(fēng)、較大風(fēng)速情況下,選取固定高度4種不同間距的布置方案,對(duì)比分析了空冷島換熱量的變化規(guī)律,并結(jié)合空冷島周圍流線圖和溫度云圖,分析了“熱風(fēng)回流”和“倒灌”現(xiàn)象產(chǎn)生的原因。結(jié)果表明較近的布置有利于提高空冷島的質(zhì)量流量和換熱量,迎風(fēng)單元的性能有一定改善,但隨環(huán)境風(fēng)速增大,改善效果越來(lái)越不顯著;最后,使用致動(dòng)盤風(fēng)力機(jī)模型替代三維實(shí)體風(fēng)力機(jī),將風(fēng)力機(jī)簡(jiǎn)化為一個(gè)產(chǎn)生壓強(qiáng)差的平面,減小計(jì)算量,模擬了在側(cè)面來(lái)風(fēng)和正面來(lái)風(fēng)兩種風(fēng)向、較大風(fēng)速時(shí),風(fēng)力機(jī)布置2種不同高度布置對(duì)空冷島性能的影響。結(jié)果表明,較高的布置方案能降低空冷平臺(tái)上方環(huán)境風(fēng)速,減弱環(huán)境風(fēng)對(duì)空冷島出口空氣的壓制作用,削弱了熱風(fēng)回流現(xiàn)象。較低布置對(duì)迎風(fēng)單元換熱量提升有幫助,但整體改善效果不如較高布置。2種布置側(cè)面來(lái)風(fēng)比正面來(lái)風(fēng)時(shí)空冷島改善效果好。研究結(jié)果為進(jìn)一步優(yōu)化空冷島的換熱性能提供參考。
[Abstract]:The technology of wind power generation and direct air cooling system are widely used in the area of "rich coal, short water and more wind" in the north of China.The ambient wind will significantly affect the heat transfer performance of the air-cooled condenser.The velocity of air flowing through the wind turbine will decrease, and the performance of the air-cooled island can be improved by coupling the wind turbine with the air-cooled island, and the utilization of energy can be optimized.In this paper, the effect of wind turbine arrangement on the flow heat transfer performance of air-cooled condenser is studied by numerical simulation.Firstly, the three-dimensional solid wind turbine model is established according to the momentum and leaf element theory. The availability of the model is verified by simulation, and the variation law of the wake flow field of the wind turbine is obtained when the wind speed is designed.The coupling model of three-dimensional solid wind turbine and air-cooled island is established. Under the condition of side wind and large wind speed, four different arrangement schemes with fixed height are selected, and the variation law of heat transfer of air-cooled island is compared and analyzed.The causes of the phenomenon of "hot air return" and "inverted irrigation" are analyzed by combining the streamline diagram and temperature cloud chart around the air-cooled island.The results show that the near arrangement is beneficial to improve the mass flow and heat exchange of the air-cooled island, and the performance of the upwind unit is improved to some extent, but with the increase of the ambient wind speed, the improvement effect is less and less remarkable.Using the model of actuated disk wind turbine instead of three-dimensional solid wind turbine, the wind turbine is simplified as a plane that produces pressure difference, and the calculation is reduced, and the wind direction of side wind and front wind are simulated, and the wind speed is large.The effect of two different height arrangements on the performance of air-cooled islands.The results show that the higher arrangement scheme can reduce the ambient wind speed over the air-cooled platform, weaken the suppression of the ambient wind on the air cooling island outlet air, and weaken the hot air return phenomenon.The lower arrangement is helpful to the heat transfer of upwind units, but the overall improvement effect is not as good as that of the higher arrangement of .2 types of side wind than the positive wind to improve the space-time cold island.The results provide a reference for further optimization of heat transfer performance of air-cooled islands.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TM614;TM621
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 賈要勤;風(fēng)力發(fā)電實(shí)驗(yàn)用模擬風(fēng)力機(jī)[J];太陽(yáng)能學(xué)報(bào);2004年06期
2 任臘春;張禮達(dá);;基于模糊理論的風(fēng)力機(jī)故障診斷專家系統(tǒng)的研究[J];流體傳動(dòng)與控制;2006年06期
3 郭永麗;吳健;溫步瀛;江岳文;;變速風(fēng)力機(jī)的建模與仿真[J];福建電力與電工;2008年03期
4 趙榮珍;呂鋼;;大型水平軸式風(fēng)力機(jī)的國(guó)內(nèi)外研究狀況分析[J];風(fēng)機(jī)技術(shù);2009年01期
5 蔣磊;鄧召義;查俊;;變速風(fēng)力機(jī)的靜態(tài)特性仿真研究[J];機(jī)械工程師;2010年02期
6 張亮;吳海濤;荊豐梅;崔琳;;海上漂浮式風(fēng)力機(jī)研究進(jìn)展及發(fā)展趨勢(shì)[J];海洋技術(shù);2010年04期
7 成思琪;成健;;關(guān)于高原2MW風(fēng)力機(jī)電器容量[J];科技資訊;2011年14期
8 石一輝;魯宗相;閔勇;喬穎;陳惠粉;;變速風(fēng)力機(jī)穩(wěn)定性研究[J];電網(wǎng)技術(shù);2011年05期
9 李少華;王東華;岳巍澎;李龍;王恒;;雙風(fēng)力機(jī)風(fēng)向變化時(shí)尾流及陣列數(shù)值研究[J];動(dòng)力工程學(xué)報(bào);2011年10期
10 趙銀鳳;劉志璋;郭躍鵬;;小型風(fēng)力機(jī)偏航時(shí)輸出功率的計(jì)算和實(shí)驗(yàn)驗(yàn)證[J];電力與能源;2011年05期
相關(guān)會(huì)議論文 前10條
1 張亮;吳海濤;;海上浮式風(fēng)力機(jī)技術(shù)現(xiàn)狀及難點(diǎn)[A];中國(guó)農(nóng)業(yè)機(jī)械工業(yè)協(xié)會(huì)風(fēng)能設(shè)備分會(huì)2013年度論文集(上)[C];2013年
2 王同光;;風(fēng)力機(jī)設(shè)計(jì)及其空氣動(dòng)力學(xué)問(wèn)題[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
3 張亮;吳海濤;;海上浮式風(fēng)力機(jī)技術(shù)現(xiàn)狀及難點(diǎn)[A];中國(guó)農(nóng)機(jī)工業(yè)協(xié)會(huì)風(fēng)能設(shè)備分會(huì)《風(fēng)能產(chǎn)業(yè)》(2013年第7期)[C];2013年
4 賀德馨;;風(fēng)力機(jī)設(shè)計(jì)軟件包[A];新世紀(jì) 新機(jī)遇 新挑戰(zhàn)——知識(shí)創(chuàng)新和高新技術(shù)產(chǎn)業(yè)發(fā)展(下冊(cè))[C];2001年
5 朱方劍;王振宇;劉國(guó)華;章子華;;沿海某灘涂風(fēng)力機(jī)抗震分析[A];第19屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第Ⅲ冊(cè))[C];2010年
6 陳余岳;張錦南;王強(qiáng);周利峰;;660kW風(fēng)力機(jī)玻璃鋼葉片研制[A];第十五屆玻璃鋼/復(fù)合材料學(xué)術(shù)年會(huì)論文集[C];2003年
7 陳余岳;張錦南;王強(qiáng);周利峰;;660kW風(fēng)力機(jī)玻璃鋼葉片研制[A];中國(guó)復(fù)合材料學(xué)會(huì)2004年年會(huì)論文集[C];2004年
8 陳余岳;張錦南;王強(qiáng);周利峰;;660kW風(fēng)力機(jī)玻璃鋼葉片研制[A];第十五屆玻璃鋼/復(fù)合材料學(xué)術(shù)年會(huì)論文集[C];2003年
9 朱,
本文編號(hào):1687652
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1687652.html