HVDC電纜終端電場(chǎng)分布特性及試驗(yàn)終端的設(shè)計(jì)
本文選題:高壓直流電纜 切入點(diǎn):電纜終端 出處:《哈爾濱理工大學(xué)》2017年碩士論文
【摘要】:高壓直流輸電在長(zhǎng)距離、大容量輸電方面具有明顯優(yōu)勢(shì),是實(shí)現(xiàn)我國(guó)“西電東送,南北互供,全國(guó)聯(lián)網(wǎng)”的電力資源優(yōu)化配置目標(biāo)的優(yōu)良技術(shù)手段。在引起電力電纜系統(tǒng)故障的諸多因素中,電纜終端作為電力電纜系統(tǒng)的基本結(jié)構(gòu)出現(xiàn)故障所占的比例最大。當(dāng)對(duì)電纜終端施加直流疊加沖擊電壓時(shí),本體絕緣與增強(qiáng)絕緣界面處易于聚集空間電荷,導(dǎo)致局部電場(chǎng)發(fā)生畸變,嚴(yán)重時(shí)會(huì)使絕緣發(fā)生擊穿,在一定程度上限制了直流電纜系統(tǒng)的發(fā)展。在直流電纜出廠前要對(duì)其進(jìn)行不同試驗(yàn)的檢測(cè),如果試驗(yàn)時(shí)使用不合適的終端很容易造成錯(cuò)誤的結(jié)果,在以往的試驗(yàn)中通常采用商品終端進(jìn)行檢測(cè),然而其不可反復(fù)使用,造價(jià)高,因而需要一類性能可靠、安裝方便、經(jīng)濟(jì)實(shí)用的試驗(yàn)終端對(duì)直流電纜進(jìn)行檢測(cè)。綜上所述,研制合理的直流電纜終端和試驗(yàn)終端具有重要的現(xiàn)實(shí)意義。利用COMSOL Multiphysics仿真軟件計(jì)算了以不同硅橡膠為增強(qiáng)絕緣,不同XLPE絕緣為電纜本體絕緣時(shí)電纜終端內(nèi)的電場(chǎng)分布,選擇出最優(yōu)增強(qiáng)絕緣和本體絕緣組合,發(fā)現(xiàn)以普通硅橡膠作為增強(qiáng)絕緣,SiO2/XLPE復(fù)合絕緣作為電纜本體絕緣時(shí),電纜終端內(nèi)的電場(chǎng)分布較合理,并計(jì)算了其在穩(wěn)態(tài)電場(chǎng)和暫態(tài)電場(chǎng)下的電場(chǎng)分布。其結(jié)果表明在負(fù)荷循環(huán)試驗(yàn)電壓、雷電沖擊電壓、操作過(guò)電壓作用下電纜終端內(nèi)的電場(chǎng)分布合理。繼而,對(duì)該電纜終端進(jìn)行負(fù)荷循環(huán)試驗(yàn)以及沖擊電壓試驗(yàn),試驗(yàn)過(guò)程中電纜終端未出現(xiàn)擊穿以及閃絡(luò)現(xiàn)象,表明該種絕緣配合的電纜終端具有優(yōu)異的長(zhǎng)期可靠性,滿足使用要求。設(shè)計(jì)了均壓環(huán)型、充油型、應(yīng)力錐型HVDC電纜試驗(yàn)終端,并以此分別建立仿真模型,利用COMSOL Multiphysics軟件計(jì)算了穩(wěn)態(tài)電場(chǎng)和暫態(tài)電場(chǎng)下HVDC電纜試驗(yàn)終端內(nèi)的電場(chǎng)分布,仿真結(jié)果表明:試驗(yàn)終端可明顯改善電纜外屏蔽端部的電場(chǎng)分布,試驗(yàn)終端內(nèi)和電纜端部的電場(chǎng)分布合理。
[Abstract]:HVDC transmission has obvious advantages in long distance and large capacity transmission. It is to realize the "power transmission from west to east, and from north to south to supply each other" in our country. Excellent technical means for the goal of optimizing the allocation of power resources based on national interconnection. Among the many factors causing power cable system failures, As the basic structure of power cable system, cable terminal has the largest proportion of faults. When the DC superimposed impulse voltage is applied to the cable terminal, the space charge is easily accumulated at the interface of body insulation and reinforced insulation. The local electric field will be distorted and the insulation will break down seriously, which limits the development of DC cable system to a certain extent. Different tests should be carried out before the DC cable leaves the factory. If the use of an inappropriate terminal in the test is likely to lead to wrong results, the commodity terminal is usually used for testing in previous tests, but it is not reusable and costly, so it requires a class of reliable performance and easy installation. The economical and practical test terminal detects DC cable. In conclusion, it is of great practical significance to develop a reasonable DC cable terminal and test terminal. Using COMSOL Multiphysics simulation software, the insulation of different silicone rubber is calculated. When different XLPE insulation is the electric field distribution in the cable terminal, the optimum combination of enhanced insulation and bulk insulation is selected. It is found that when the ordinary silicone rubber is used as the reinforced insulation, SiO2 / XLPE composite insulation is used as the cable body insulation. The electric field distribution in the terminal of the cable is reasonable, and the electric field distribution under the steady and transient electric field is calculated. The results show that the electric field distribution in the load cycle test voltage, the lightning impulse voltage, The electric field distribution in the cable terminal is reasonable under the action of operating overvoltage. Then, the load cycle test and impulse voltage test are carried out on the cable terminal. During the test, no breakdown or flashover occurs at the cable terminal. It is shown that this kind of cable terminal with insulation coordination has excellent long-term reliability and meets the requirements of application. The test terminals of HVDC cable with uniform voltage ring type, oil-filled type and stress cone type are designed, and the simulation models are established respectively. The electric field distribution in the test terminal of HVDC cable under steady and transient electric field is calculated by using COMSOL Multiphysics software. The simulation results show that the electric field distribution in the outside shield end of the cable can be improved obviously by the test terminal. The distribution of electric field in the test terminal and at the end of the cable is reasonable.
【學(xué)位授予單位】:哈爾濱理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM75
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李長(zhǎng)明;孫欽佩;李春陽(yáng);侯帥;傅明利;韓寶忠;;硅橡膠電導(dǎo)特性對(duì)XLPE絕緣高壓直流電纜中間接頭內(nèi)電場(chǎng)分布的影響[J];南方電網(wǎng)技術(shù);2015年10期
2 王霞;朱有玉;王陳誠(chéng);吳鍇;屠德民;;空間電荷效應(yīng)對(duì)直流電纜及附件絕緣界面電場(chǎng)分布的影響[J];高電壓技術(shù);2015年08期
3 鐘海杰;王佩龍;王錦明;黃洪;夏云杰;;用于抑制界面空間電荷的直流電纜附件設(shè)計(jì)[J];高電壓技術(shù);2015年04期
4 陳曦;;交聯(lián)聚乙烯高壓直流電纜的研究現(xiàn)狀與發(fā)展[J];電線電纜;2015年02期
5 李巖;羅雨;許樹楷;周月賓;袁志昌;;柔性直流輸電技術(shù):應(yīng)用、進(jìn)步與期望[J];南方電網(wǎng)技術(shù);2015年01期
6 姚良忠;吳婧;王志冰;李琰;魯宗相;;未來(lái)高壓直流電網(wǎng)發(fā)展形態(tài)分析[J];中國(guó)電機(jī)工程學(xué)報(bào);2014年34期
7 韓寶忠;傅明利;李春陽(yáng);趙洪;侯帥;李忠華;;硅橡膠電導(dǎo)特性對(duì)XLPE絕緣高壓直流電纜終端電場(chǎng)分布的影響[J];高電壓技術(shù);2014年09期
8 陳慶國(guó);秦艷軍;尚南強(qiáng);池明赫;魏新勞;;溫度對(duì)高壓直流電纜中間接頭內(nèi)電場(chǎng)分布的影響分析[J];高電壓技術(shù);2014年09期
9 周遠(yuǎn)翔;趙健康;劉睿;陳錚錚;張?jiān)葡?;高壓/超高壓電力電纜關(guān)鍵技術(shù)分析及展望[J];高電壓技術(shù);2014年09期
10 楊黎明;朱智恩;楊榮凱;楊迎建;王宇;;柔性直流電纜絕緣料及電纜結(jié)構(gòu)設(shè)計(jì)[J];電力系統(tǒng)自動(dòng)化;2013年15期
相關(guān)碩士學(xué)位論文 前1條
1 顧金;柔性高壓直流交聯(lián)聚乙烯(XLPE)電纜及其附件的設(shè)計(jì)研究[D];上海交通大學(xué);2010年
,本文編號(hào):1683841
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1683841.html