主動(dòng)配電網(wǎng)與微電網(wǎng)分層協(xié)調(diào)電壓控制
本文選題:分布式電源 切入點(diǎn):微網(wǎng) 出處:《山東大學(xué)》2017年碩士論文
【摘要】:當(dāng)前,全球能源緊缺及環(huán)境污染日益嚴(yán)峻,具備一系列優(yōu)勢(shì)的分布式發(fā)電技術(shù)逐步嶄露頭角。為應(yīng)對(duì)常規(guī)配電系統(tǒng)的結(jié)構(gòu)及運(yùn)行策略與分布式電源(distributed generation,DG)大規(guī)模接入的矛盾,既能提高DG利用效率又能保證供電可靠性的微電網(wǎng)技術(shù)應(yīng)運(yùn)而生,在逆變型并網(wǎng)DG基本控制方法及微網(wǎng)典型控制模式基礎(chǔ)上,從并網(wǎng)DG(光伏系統(tǒng))、多個(gè)DG組成的微網(wǎng)、多個(gè)微網(wǎng)并網(wǎng)運(yùn)行組成的系統(tǒng)三個(gè)層面對(duì)并網(wǎng)點(diǎn)電壓就地控制策略及分層協(xié)調(diào)電壓優(yōu)化控制方法進(jìn)行了分析研究。隨著相關(guān)技術(shù)發(fā)展,配電網(wǎng)絡(luò)中DG滲透率日漸升高,光伏等通過逆變器并入電網(wǎng)的DG均具有一定的無功容量,可以向電網(wǎng)提供無功支撐,鑒于電力系統(tǒng)可靠性及穩(wěn)定性要求,光伏電源參與并網(wǎng)點(diǎn)電壓控制備受關(guān)注。論文基于傳統(tǒng)的逆變器控制方法,從外環(huán)控制器設(shè)計(jì)的角度,有功功率外環(huán)設(shè)定為恒有功功率控制方式,無功功率外環(huán)設(shè)定為恒壓控制方式,利用光伏無功功率實(shí)現(xiàn)對(duì)并網(wǎng)點(diǎn)電壓的穩(wěn)定控制。當(dāng)光伏有功設(shè)定值接近最大功率時(shí),其無功輸出能力將受到容量制約,為協(xié)調(diào)光伏有功、無功出力之間的矛盾,提出相應(yīng)控制策略,當(dāng)電壓波動(dòng)較大時(shí),可適當(dāng)減少光伏有功輸出,優(yōu)先滿足調(diào)壓要求。相較于簡(jiǎn)單并網(wǎng)的各類DG,微網(wǎng)運(yùn)行方式靈活,即可以孤網(wǎng)模式運(yùn)行,又可工作于并網(wǎng)狀態(tài)。當(dāng)微網(wǎng)并網(wǎng)時(shí),配網(wǎng)需充分利用微網(wǎng)內(nèi)部的各類DG參與自身的優(yōu)化調(diào)度。論文借鑒"二級(jí)電壓控制"的原理,將各個(gè)聯(lián)絡(luò)點(diǎn)(point of common coupling,PCC)作為主導(dǎo)節(jié)點(diǎn),將微網(wǎng)在配網(wǎng)層面PCC點(diǎn)處等值為一發(fā)電機(jī),其無功輸出作為配網(wǎng)優(yōu)化控制變量,配網(wǎng)優(yōu)化給定PCC的電壓參考值,并將此參考值作為微網(wǎng)優(yōu)化模型的目標(biāo)函數(shù),將微網(wǎng)內(nèi)各類DG所發(fā)無功納入到優(yōu)化控制變量中,與傳統(tǒng)的控制策略相結(jié)合,協(xié)調(diào)微網(wǎng)層面各類無功源控制PCC點(diǎn)電壓。當(dāng)多個(gè)微網(wǎng)并網(wǎng)運(yùn)行時(shí),其將對(duì)配網(wǎng)的運(yùn)行和控制產(chǎn)生一系列的影響,如果不考慮配微之間的交互協(xié)調(diào)優(yōu)化問題,將可能導(dǎo)致部分技術(shù)問題。論文在已有研究的基礎(chǔ)上,提出了一種配微協(xié)調(diào)優(yōu)化控制方法,即采用"分解協(xié)調(diào)"的方法將全系統(tǒng)的優(yōu)化控制問題分解為不同控制子區(qū)域的控制問題。首先將配微解耦,在配網(wǎng)層面,將微網(wǎng)等效為PCC點(diǎn)負(fù)荷注入,在微網(wǎng)層面,將配網(wǎng)等效為PCC點(diǎn)電壓源,交替計(jì)算配微最優(yōu)潮流。同時(shí)交互邊界處的協(xié)調(diào)變量,即PCC點(diǎn)電壓及功率值,進(jìn)而實(shí)現(xiàn)配微優(yōu)化控制的協(xié)調(diào),實(shí)現(xiàn)了靈活性與協(xié)調(diào)性的統(tǒng)一。考慮全天不同時(shí)段光伏有功出力及負(fù)荷變化情況,算例仿真表明所提控制策略與求解算法的有效性。
[Abstract]:At present, the global energy shortage and environmental pollution are becoming increasingly severe, and distributed generation technology with a series of advantages is gradually emerging. In order to cope with the contradiction between the structure and operation strategy of the conventional distribution system and the large-scale access of distributed generation system (DGG), The microgrid technology, which can improve the efficiency of DG utilization and ensure the reliability of power supply, emerges as the times require. On the basis of the basic control method of inverter grid-connected DG and the typical control mode of microgrid, the grid-connected DG (photovoltaic system), which is composed of several DGs, is introduced. In this paper, the local control strategy of parallel network voltage and the method of hierarchical and coordinated voltage optimization control are analyzed and studied in three layers of the system composed of multiple microgrid operation. With the development of related technology, the DG permeability in distribution network is increasing day by day. The DG, which is incorporated into the grid by inverters, has a certain reactive power capacity, which can provide reactive power support to the power network. In view of the reliability and stability requirements of the power system, Based on the traditional inverter control method, the active power outer loop is set as the constant active power control mode from the point of view of the outer loop controller design. The reactive power outer loop is set as the constant voltage control mode, and the stable control of the parallel dot voltage is realized by using the photovoltaic reactive power. When the set value of the photovoltaic active power is close to the maximum power, its reactive power output ability will be restricted by the capacity, which is the coordination of the photovoltaic active power. According to the contradiction between reactive power and reactive power, the corresponding control strategy is put forward. When the voltage fluctuation is large, the active power output of photovoltaic can be reduced appropriately, and the voltage regulation requirement can be satisfied first. Compared with all kinds of DGs connected by simple grid, the operation mode of microgrid is flexible. When the microgrid is connected to the grid, the distribution network needs to take full advantage of all kinds of DG inside the microgrid to participate in its own optimal scheduling. This paper draws lessons from the principle of "two-stage voltage control". Each focal point of common coupling is used as the leading node, the microgrid is equivalent to a generator at the PCC point of the distribution network, its reactive power output is taken as the optimal control variable of the distribution network, and the voltage reference value of the given PCC is optimized by the distribution network. The reference value is taken as the objective function of the microgrid optimization model, and the reactive power generated by various DG in the microgrid is incorporated into the optimal control variable, which is combined with the traditional control strategy. Coordinated reactive power sources control the PCC point voltage at the microgrid level. When multiple microgrids are connected to the grid, it will have a series of effects on the operation and control of the distribution network. On the basis of the previous research, this paper proposes an optimal control method for matching microcoordination. That is to say, the optimal control problem of the whole system is decomposed into control problems in different control sub-regions by the method of "decomposition and coordination". Firstly, the microgrid is decoupled. At the distribution level, the microgrid is equivalent to the PCC point load injection, and at the microgrid level, the optimal control problem is decomposed into the control problem of different control sub-regions. The distribution network is equivalent to a PCC point voltage source, and the optimal power flow is calculated alternately. At the same time, the coordination variable at the interaction boundary, that is, the voltage and power value of the PCC point, is used to realize the coordination of the distribution micro-optimal control. The unity of flexibility and coordination is realized. Considering the variation of active power and load of photovoltaic at different periods of the day, the simulation results show that the proposed control strategy and the algorithm are effective.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM76;TM727;TM714.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 呂天光;艾芊;孫樹敏;程艷;趙媛媛;;含多微網(wǎng)的主動(dòng)配電系統(tǒng)綜合優(yōu)化運(yùn)行行為分析與建模[J];中國(guó)電機(jī)工程學(xué)報(bào);2016年01期
2 裴瑋;杜妍;李洪濤;楊艷紅;鄧衛(wèi);齊智平;;應(yīng)對(duì)微網(wǎng)群大規(guī)模接入的互聯(lián)和互動(dòng)新方案及關(guān)鍵技術(shù)[J];高電壓技術(shù);2015年10期
3 陽育德;龔利武;韋化;;大規(guī)模電網(wǎng)分層分區(qū)無功優(yōu)化[J];電網(wǎng)技術(shù);2015年06期
4 邢海軍;程浩忠;張逸;;基于多種主動(dòng)管理策略的配電網(wǎng)綜合無功優(yōu)化[J];電網(wǎng)技術(shù);2015年06期
5 陳麗;張晉國(guó);蘇海鋒;;考慮并網(wǎng)光伏電源出力時(shí)序特性的配電網(wǎng)無功規(guī)劃[J];電工技術(shù)學(xué)報(bào);2014年12期
6 張瑋亞;李永麗;;面向多分布式電源的微電網(wǎng)分區(qū)電壓質(zhì)量控制[J];中國(guó)電機(jī)工程學(xué)報(bào);2014年28期
7 譚煌;張璐;叢鵬偉;唐巍;耿光飛;楊德昌;李絢麗;;計(jì)及分布式電源與電容器協(xié)調(diào)的配電網(wǎng)日前無功計(jì)劃[J];電網(wǎng)技術(shù);2014年09期
8 陳秋南;韋鋼;盧煒;朱昊;;基于超級(jí)電容器控制策略的含風(fēng)電微電網(wǎng)電壓波動(dòng)的抑制[J];電力系統(tǒng)保護(hù)與控制;2014年16期
9 魯斌;衣楠;;孤島模式下微電網(wǎng)自趨優(yōu)分布式無功電壓控制策略[J];電力系統(tǒng)自動(dòng)化;2014年09期
10 陳秋南;韋鋼;朱昊;周利駿;;風(fēng)電/微型燃?xì)廨啓C(jī)混合微電網(wǎng)電壓波動(dòng)優(yōu)化控制[J];電力系統(tǒng)自動(dòng)化;2014年09期
相關(guān)博士學(xué)位論文 前1條
1 李文博;輸配電網(wǎng)潮流與優(yōu)化的理論研究[D];山東大學(xué);2013年
相關(guān)碩士學(xué)位論文 前1條
1 黃冬冬;微電網(wǎng)電壓控制與無功分配策略研究[D];東南大學(xué);2015年
,本文編號(hào):1682761
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1682761.html