電紡多孔富氮碳纖維的制備及其電化學(xué)性能的研究
本文選題:超級電容器 切入點:靜電紡絲 出處:《揚州大學(xué)》2016年碩士論文
【摘要】:超級電容器是一種介于傳統(tǒng)電容器和電池之間的新型儲能器件,具有電容量大、循環(huán)壽命長、充放電時間快、功率密度高和維護(hù)成本低等優(yōu)點。隨著社會的發(fā)展,超級電容器作為新型儲能器由于其優(yōu)越的性能受到研究者們越來越多的重視,在新能源汽車,國防航天、傳感器等領(lǐng)域具有廣闊的應(yīng)用前景。電極材料是超級電容器的核心部分,是決定超級電容器性能的關(guān)鍵,因此,制備高性能的電極材料是超級電容器研究的重點。碳材料是目前應(yīng)用最多的超級電容器電極材料,其具有比表面積大,孔結(jié)構(gòu)可控,化學(xué)性質(zhì)穩(wěn)定等優(yōu)點,另外碳材料來源廣泛,生產(chǎn)成本低。靜電紡絲提供了一種成本低廉、簡便高效制備碳纖維及復(fù)合纖維的方法,且纖維直徑可調(diào)。本文選用聚丙烯腈(PAN)作為紡絲前驅(qū)體,以三聚氰胺作為氮源,將三聚氰胺合成密胺樹脂(MF)以溶解于紡絲液中,通過靜電紡絲制備纖維原絲,再經(jīng)過預(yù)氧化、碳化制備出富氮碳纖維,通過將富氮碳纖維活化,在紡絲前驅(qū)體中加入造孔劑等方法制備多孔富氮碳纖維,采用掃描電鏡(SEM)、X射線衍射儀(XRD)、X光電子能譜(XPS)、N2吸脫附等測試方法對纖維的物理和化學(xué)性質(zhì)進(jìn)行了表征分析。將制得的碳纖維制成電極,采用循環(huán)伏安法和恒電流充放電法對碳纖維進(jìn)行了電化學(xué)測試。其主要研究內(nèi)容如下:通過靜電紡絲制備出了不同MF摻雜量的纖維原絲,MF摻雜量依次為0%、25%、50%和75%,在250℃下預(yù)氧化,800℃碳化后制得了富氮碳纖維。表征結(jié)果表明:紡絲液中摻雜MF后依然可制得纖維,但直徑有所變粗,碳化后纖維直徑減小;碳纖維均為無定型石墨結(jié)構(gòu);碳纖維表面的氮元素含量隨著MF摻雜量的增大而增大,當(dāng)摻雜量為75%時,碳纖維表面的氮含量高達(dá)12.1%。電化學(xué)測試結(jié)果發(fā)現(xiàn)MF摻雜量為75%的碳纖維表現(xiàn)出最好的電化學(xué)性能:1A/g電流密度下比電容為144F僧,遠(yuǎn)高于未摻雜MF的純PAN碳纖維;在10A/g電流密度下比電容為85F/g,與1A/g電流密度下相比保持了60%的比電容,具有良好的倍率性能。將制得的PAN和MF(75)/PAN富氮碳纖維浸泡在KOH溶液中,再在800℃C下活化30rmin以制取多孔富氮碳纖維。表征結(jié)果表明:活化后的碳纖維仍為無定型石墨結(jié)構(gòu),且石墨化程度有所降低。由于KOH的加入以及二次高溫處理使得活化后碳纖維表面的氮元素含量下降,但氧元素含量略微增加。KOH活化后極大的提高了纖維的比表面積,其中活化后PAN碳纖維的比表面積從原來的6m2/g提高到了868m2/g,活化后MF/PAN碳纖維的比表面積從原來的58m2/g增大到了453m2/g,纖維中的微孔和中孔數(shù)量也大大增加。電化學(xué)測試結(jié)果表明活化后兩纖維的電化學(xué)性能都優(yōu)于活化前,其中由于含氮官能團(tuán)和孔結(jié)構(gòu)的協(xié)同作用,使得(A)MF/PAN碳纖維具有最出眾的電化學(xué)性能,在1A/g電流密度下比電容高達(dá)255F/g,且在10A/g電流密度下比電容為209F/g,比電容保持率高達(dá)82%。任紡絲前驅(qū)體中加入聚乙二醇作為造孔劑,通過靜電紡絲、預(yù)氧化、碳化得到多孔富氦碳纖維。表征結(jié)果表明:聚乙二醇的加入不會改變碳纖維表面的元素含量;聚乙二醇在高溫下熱解成氣體小分子而起到造孔作用,使得到的碳纖維比表面積由原來的58m2/g增大到了209m2/g;電化學(xué)測試結(jié)果表明通過聚乙二酣造孔制得的多孔富碳氮碳纖維任1A/g電流密度下的比電容為280F/g,與通過KOH活化得到的纖維相比具有更好的電化學(xué)性能。
[Abstract]:The super capacitor is a new energy storagecomponent between conventional capacitors and batteries can have devices, large capacity, long cycle life, fast charge and discharge time, high power density and low maintenance costs. With the development of society, as a new type of super capacitor energy storage device due to its superior performance by researchers more and more attention in the new energy vehicles, aerospace and defense, has broad application prospects in areas such as sensors. The electrode material is the core part of the super capacitor, is the key to determine the performance of super capacitor, therefore, the preparation of high performance electrode material of super capacitor is the focus of research. The carbon material is used most of the super capacitor electrode material, which has a large surface area, controllable pore structure, has the advantages of stable chemical properties, in addition to carbon of wide material source, low production cost. The electrospinning provides a low cost The method is simple and efficient preparation of carbon fiber and composite fiber, and the fiber diameter is adjustable. The polyacrylonitrile (PAN) as a spinning precursor, using melamine as nitrogen source, the synthesis of melamine melamine resin (MF) to dissolve in the spinning solution, preparation of fibers by electrospinning, after pre oxidation carbide, prepared nitrogen rich carbon fiber, the nitrogen rich carbon fiber activation, adding pore forming agent and preparation method of porous carbon fiber spinning in a nitrogen rich precursor, using scanning electron microscopy (SEM), X ray diffraction (XRD), X ray photoelectron spectroscopy (XPS), N2 and physical absorption chemical desorption test method of fiber were characterized. The carbon fibers made of electrode by cyclic voltammetry and galvanostatic charge discharge method of electrochemical test of carbon fiber. The main research contents are as follows: through electrospinning prepared different doping amount of MF The fiber, the doping amount of MF was 0%, 25%, 50% and 75%, at a temperature below 250 DEG C after pre oxidation, 800 carbide prepared nitrogen rich carbon fiber. The characterization results showed that the spinning solution after MF doping can still obtain a fiber, but the diameter is thicker, carbonized fiber diameter decreases; the carbon fiber was amorphous graphite structure; the nitrogen content of the surface of the carbon fiber increases with the increase of MF doping amount, when the doping amount was 75%, the nitrogen content of carbon fiber surface is as high as 12.1%. electrochemical test results showed that MF doped with 75% carbon fiber showed the best electrochemical current density: 1A/g under the specific capacitance of 144F is much higher than that of pure PAN monk, not carbon fiber doped MF; 85F/g capacitance in the current density of 10A/g, and the current density of 1A/g compared to maintain a 60% specific capacitance, with good rate capability. PAN and MF will be prepared (75) nitrogen rich carbon fiber soaked in /PAN K In OH solution, and then at 800 DEG C under 30rmin to produce nitrogen rich porous activated carbon fiber. The results showed that: the carbon fiber after activation is amorphous graphite structure, and the degree of graphitization decreased. Due to the addition of KOH and two times of high temperature after activation treatment makes the nitrogen content of the carbon fiber surface decreased. But the oxygen content increased slightly after the activation of.KOH has greatly improved the specific surface area of the fiber, the activated carbon fiber PAN specific surface area from 6m2/g to 868m2/g, MF/PAN activated carbon fiber surface area increased from the original 58m2/g to 453m2/g, the number of micropores and mesopores in fiber also greatly increased. The electrochemical tests show that the electrochemical performance of activated two fibers are better than before activation, which due to the synergistic effects of nitrogen containing functional groups and pore structure, the (A) MF/PAN carbon fiber has the best electrochemical performance Can, in the current density of 1A/g specific capacitance as high as 255F/g, and in the current density of 10A/g 209F/g specific capacitance, the capacitance retention was as high as 82%. spinning precursor adding polyethylene glycol as pore through electrostatic spinning, preoxidation, carbonization to obtain porous helium rich carbon fiber. The results show that the characterization of polyethylene glycol the addition will not change the content of carbon fiber surface; polyethylene glycol under high temperature pyrolysis gas into small molecules and play the role of pore, the carbon fiber had higher surface area increases from original 58m2/g to 209m2/g; the electrochemical test results table of porous carbon and nitrogen rich carbon fiber by polyethylene two fast pore system the current density of 1A/g is lower than the capacitance of 280F/g, electrochemical and have better performance compared with the fiber obtained by KOH activation.
【學(xué)位授予單位】:揚州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TQ340.64;TM53
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 邢寶林;諶倫建;張傳祥;黃光許;郭暉;徐冰;馬名杰;;KOH活化法制備褐煤基活性炭的活化機(jī)理研究[J];中國礦業(yè)大學(xué)學(xué)報;2014年06期
2 常麗娟;袁磊;付志兵;韋建軍;唐永建;王朝陽;;超高比表面積氮摻雜碳?xì)饽z的制備及其電化學(xué)性能[J];強(qiáng)激光與粒子束;2013年10期
3 劉小軍;盧永周;;超級電容器綜述[J];西安文理學(xué)院學(xué)報(自然科學(xué)版);2011年02期
4 劉春娜;;超級電容器應(yīng)用展望[J];電源技術(shù);2010年09期
5 陳光鏵;徐建華;楊亞杰;蔣亞東;葛萌;;超級電容器有機(jī)導(dǎo)電聚合物電極材料的研究進(jìn)展[J];材料導(dǎo)報;2009年19期
6 楊盛毅;文方;;超級電容器綜述[J];現(xiàn)代機(jī)械;2009年04期
7 薛聰;胡影影;黃爭鳴;;靜電紡絲原理研究進(jìn)展[J];高分子通報;2009年06期
8 霍丹群;羅偉;侯長軍;羅小剛;法煥寶;楊軍;;靜電紡絲納米纖維在傳感器領(lǐng)域的研究進(jìn)展[J];傳感器與微系統(tǒng);2009年02期
9 徐睿;唐子龍;李俊榮;張中太;;非對稱混合電池/混合電容器[J];化學(xué)進(jìn)展;2009年01期
10 胡毅;陳軒恕;杜硯;尹婷;;超級電容器的應(yīng)用與發(fā)展[J];電力設(shè)備;2008年01期
,本文編號:1677755
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1677755.html