基于大系統(tǒng)理論的電網(wǎng)負(fù)荷動態(tài)調(diào)度優(yōu)化
本文選題:機(jī)組組合 切入點:分解協(xié)調(diào) 出處:《華北電力大學(xué)(北京)》2017年碩士論文
【摘要】:機(jī)組組合問題的建模和優(yōu)化是電力系統(tǒng)調(diào)度管理的重要部分,對資源的有效利用和降低系統(tǒng)運(yùn)行成本起著關(guān)鍵作用。由于用連續(xù)量表示的機(jī)組負(fù)荷和用離散量表示的機(jī)組啟停狀態(tài)存在耦合關(guān)系,該問題成為強(qiáng)NP難的數(shù)學(xué)問題。隨著機(jī)組數(shù)量的增加,所對應(yīng)的機(jī)組組合數(shù)目呈指數(shù)式增加,在常規(guī)解法中不可避免的存在迭代時間長的問題,難以在規(guī)定時間內(nèi)求出該問題的最優(yōu)解。針對上述存在的問題,本文采用時間序列理論對歷史負(fù)荷數(shù)據(jù)建立了ARIMA模型并預(yù)測了一天內(nèi)的負(fù)荷范圍。在Java程序中通過Rserve調(diào)用R語言對預(yù)測方法進(jìn)行了仿真,分析了負(fù)荷的自相關(guān)函數(shù)和偏自相關(guān)函數(shù),結(jié)合模型選擇準(zhǔn)則得到負(fù)荷最大最小值的預(yù)測模型,預(yù)測出的未來五組數(shù)據(jù)經(jīng)過了殘差的白噪聲檢驗。根據(jù)預(yù)測出來的負(fù)荷范圍,計算出最多和最少需要啟動的機(jī)組數(shù)目,對所有不符合要求的機(jī)組組合進(jìn)行了高效的刪減,大大縮小了機(jī)組組合的選擇范圍。經(jīng)仿真分析該算法能夠在保證精確的前提下,經(jīng)過刪減后剩余的機(jī)組組合數(shù)目縮小了幾個數(shù)量級,取得了較好的效果。在此基礎(chǔ)上采用大系統(tǒng)分解協(xié)調(diào)法將負(fù)荷分配問題分解為三層結(jié)構(gòu)。中間層和底層之間通過拉格朗日乘子協(xié)調(diào)各自的輸入輸出,上層對符合條件的機(jī)組組合進(jìn)行迭代,最終得到各時段最優(yōu)機(jī)組組合與各機(jī)組輸出功率。經(jīng)過對算例的仿真分析和比較,算法計算速度極快,計算結(jié)果具有一致性。本文深入分析了機(jī)組組合問題中存在“維數(shù)災(zāi)”和“對偶間隙”的原因,將時間序列理論與大系統(tǒng)相關(guān)算法相結(jié)合,提出一種新的求解方法使機(jī)組組合問題得到極大簡化且易于求解,并經(jīng)過仿真分析對算法的可行性進(jìn)行了驗證。
[Abstract]:The modeling and optimization of unit commitment problem is an important part of power system dispatching management. It plays a key role in the efficient utilization of resources and reducing the operating cost of the system. Because of the coupling relationship between the unit load expressed by the continuous quantity and the unit starting and stopping state expressed by the discrete quantity, This problem has become a strong NP-hard mathematical problem. With the increase of the number of units, the corresponding number of units increases exponentially, and the problem of long iteration time is inevitable in the conventional solution. It is difficult to find the optimal solution of the problem within the specified time. In this paper, the ARIMA model of historical load data is established by using time series theory and the load range in one day is predicted. The prediction method is simulated by Rserve calling R language in Java program. The autocorrelation function and partial autocorrelation function of load are analyzed. Combined with the model selection criterion, the forecasting model of maximum and minimum load value is obtained. The predicted five groups of data are tested by residual white noise. According to the predicted load range, The maximum and least number of units needed to be started are calculated, and all units that do not meet the requirements are deleted efficiently, which greatly reduces the selection range of unit combinations. The simulation results show that the algorithm can ensure accuracy. The number of units remaining after the reduction has been reduced by several orders of magnitude. On the basis of this, the load distribution problem is decomposed into three layers by using the large scale system decomposition and coordination method, and the input and output between the middle layer and the bottom layer are coordinated by Lagrange multiplier. The upper layer iterates the qualified unit combination, and finally obtains the optimal unit combination and the output power of each unit in each time period. Through the simulation analysis and comparison of the example, the calculation speed of the algorithm is very fast. The calculation results are consistent. In this paper, the causes of "dimensionality disaster" and "dual gap" in the unit commitment problem are deeply analyzed, and the time series theory is combined with the large-scale system correlation algorithm. A new solution method is proposed to simplify the problem of unit commitment and to solve the problem easily. The feasibility of the algorithm is verified by simulation analysis.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:N941.4;TM73
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 鄒濤;魏峰;張小輝;;工業(yè)大系統(tǒng)雙層結(jié)構(gòu)預(yù)測控制的集中優(yōu)化與分散控制策略[J];自動化學(xué)報;2013年08期
2 張寧宇;高山;趙欣;;一種求解機(jī)組組合問題的快速拉格朗日松弛法[J];電力系統(tǒng)保護(hù)與控制;2012年19期
3 高偉;王建忠;楊耿杰;;電力系統(tǒng)經(jīng)濟(jì)負(fù)荷分配的改進(jìn)混沌粒子群算法[J];閩江學(xué)院學(xué)報;2010年02期
4 趙洪山;宋國維;江全元;;利用平衡理論進(jìn)行電力系統(tǒng)模型降階[J];電工技術(shù)學(xué)報;2010年02期
5 陳皓勇,王錫凡;機(jī)組組合問題的優(yōu)化方法綜述[J];電力系統(tǒng)自動化;1999年04期
6 郝寧湘;大系統(tǒng)理論及其思想、方法與應(yīng)用[J];系統(tǒng)辯證學(xué)學(xué)報;1998年01期
7 陳禹六;塊對角最優(yōu)化分散控制[J];控制理論與應(yīng)用;1984年02期
相關(guān)碩士學(xué)位論文 前6條
1 方鑫;風(fēng)電—火電混合電力系統(tǒng)機(jī)組優(yōu)化調(diào)度研究[D];華北電力大學(xué);2014年
2 陳銘;AGC發(fā)電機(jī)組分群控制策略的研究[D];大連理工大學(xué);2012年
3 莊莉莉;電網(wǎng)調(diào)度AGC機(jī)組性能評測的研究與實現(xiàn)[D];上海交通大學(xué);2009年
4 林濤;大系統(tǒng)理論在鋼鐵冶金加熱過程中的應(yīng)用研究[D];重慶大學(xué);2007年
5 楊禹;線性系統(tǒng)模型降階與控制器降階研究[D];浙江大學(xué);2007年
6 陳贊成;大系統(tǒng)分解協(xié)調(diào)算法及其應(yīng)用研究[D];廈門大學(xué);2001年
,本文編號:1670074
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1670074.html