石家莊某500kV變電站主變智能冷卻控制系統(tǒng)的研究與設(shè)計
發(fā)布時間:2018-03-25 05:37
本文選題:PLC 切入點:智能冷卻系統(tǒng) 出處:《華北電力大學(xué)》2017年碩士論文
【摘要】:隨著我國電力系統(tǒng)電壓等級的升高,進而超特高壓電網(wǎng)的發(fā)展,電力變壓器對電網(wǎng)的安全可靠性也變得至關(guān)重要,石家莊某500kV變電站是華北電網(wǎng)的重要一環(huán),承載著河北、北京等地的重要輸變電任務(wù),但是其主變冷卻控制系統(tǒng)仍采用繼電器邏輯控制方式,其具有控制回路復(fù)雜、故障率高、檢修困難、可靠性低、控制誤差大等的諸多缺點,嚴(yán)重威脅著電網(wǎng)供電可靠性。隨著無人值守變電站管理模式的逐步推廣,針對繼電器控制方式的諸多缺陷,結(jié)合相關(guān)的規(guī)程規(guī)定和現(xiàn)場運維人員的建議,本文提出以PLC為中心控制器,變壓器頂層油溫為被控量,無觸點的交流固態(tài)繼電器代替交流接觸器作為執(zhí)行元件,變壓器冷卻裝置為被控對象的基于PLC的智能冷卻控制系統(tǒng),該系統(tǒng)以雙電源自動轉(zhuǎn)換開關(guān)保證兩路電源的供電可靠性,以電動機保護器對風(fēng)機和油泵冷卻器的電動機進行短路、過載、過壓等保護,另外輔以相應(yīng)的開關(guān)旋鈕器件、油面溫度計以及現(xiàn)場就地冷卻控制柜組成。除了以上所述硬件部分的設(shè)計,本課題對冷卻控制系統(tǒng)的軟件部分也做了大量的研究,結(jié)合PLC下位機軟件編程設(shè)計,提出有差值裕度冷卻器投切控制、按運行時間輪詢投切冷卻器控制、工作冷卻器故障自動控制、冷卻器全?刂频染C合智能冷卻系統(tǒng)控制策略。另外,結(jié)合變電站現(xiàn)場高電磁干擾的環(huán)境影響,提出PLC下位機與上位工控機使用光纖進行遠距離通訊,利用上位機LABVIEW軟件編程實現(xiàn)冷卻控制系統(tǒng)的遠程通訊監(jiān)控。新型系統(tǒng)可以極大的克服原先繼電式冷卻控制系統(tǒng)的諸多缺點,其具有易于擴展、功能完善、運行可靠、便于維護等優(yōu)點,實現(xiàn)了冷卻系統(tǒng)的智能化控制,是傳統(tǒng)變壓器風(fēng)冷控制系統(tǒng)的理想替代產(chǎn)品。
[Abstract]:With the rise of voltage grade of power system in China and the development of UHV power grid, power transformer is also becoming very important to the safety and reliability of power network. Shijiazhuang 500kV substation is an important link of North China Power Grid, carrying Hebei. Important power transmission and transformation tasks in Beijing and other places, but its main transformer cooling control system still adopts relay logic control mode. It has many shortcomings such as complex control circuit, high failure rate, difficult maintenance, low reliability, large control error, etc. The power supply reliability of power network is seriously threatened. With the gradual promotion of unattended substation management mode, in view of the many defects of relay control mode, combined with the relevant regulations and suggestions of field operation and maintenance personnel, This paper presents an intelligent cooling control system based on PLC, which takes PLC as the central controller, the top oil temperature of the transformer as the controlled quantity, the contactless AC solid state relay as the executive element instead of the AC contactor, and the transformer cooling device as the controlled object. The system guarantees the reliability of the power supply of the two power sources by the double power automatic switching switch. The motor protector is used to protect the motor of the fan and the oil pump cooler from short circuit, overload, overvoltage, and the corresponding switch knob device. In addition to the design of the hardware mentioned above, the software part of the cooling control system is also studied in this paper, and combined with the software programming design of the PLC lower computer, the oil surface thermometer and the in-situ cooling control cabinet are composed of the oil surface thermometer and the in-situ cooling control cabinet. A comprehensive intelligent cooling system control strategy, such as switching control with differential margin cooler, polling switch cooler control according to running time, automatic control of working cooler fault, complete shutdown control of cooler, etc., is put forward. Combined with the environmental impact of high electromagnetic interference in substation, the paper puts forward that the PLC lower computer and the upper industrial control computer use optical fiber for long-distance communication. The remote communication and monitoring of cooling control system is realized by using LABVIEW software of host computer. The new system can greatly overcome many shortcomings of the former relay cooling control system, which is easy to expand, perfect in function and reliable in operation. The intelligent control of cooling system is realized, and it is an ideal substitute for traditional air cooling control system of transformer.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM63
【參考文獻】
相關(guān)期刊論文 前10條
1 陳調(diào)津;;光纖通信與光纖傳輸?shù)姆治雠c探討[J];江西建材;2016年22期
2 張勇;武俠;張雷;劉晗;張鯤;陳道明;;電力光纖通信網(wǎng)絡(luò)的規(guī)劃與設(shè)計研究[J];通訊世界;2016年19期
3 孫錳;;變壓器強油風(fēng)冷問題與改進[J];變壓器;2016年09期
4 袁焯鋒;賴皓;洪樂洲;;換流變壓器冷卻系統(tǒng)控制回路改進措施[J];陜西電力;2016年04期
5 巨建成;;600MW發(fā)電機組勵磁變壓器冷卻系統(tǒng)問題分析及改造[J];變壓器;2016年03期
6 任保忠;趙全新;孔鵬;李宗杰;;強油風(fēng)冷變壓器冷卻控制方式改造[J];山東電力技術(shù);2016年03期
7 張光明;李洪凱;劉齊;鐘丹田;高強;王茂軍;;智能變壓器風(fēng)冷控制系統(tǒng)設(shè)計[J];電氣應(yīng)用;2015年S2期
8 董國貴;;基于PLC的大型電力變壓器風(fēng)冷控制裝置研究[J];電子技術(shù)與軟件工程;2016年03期
9 王XU,
本文編號:1661802
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1661802.html
最近更新
教材專著