天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電氣論文 >

全釩液流電池電解液中活性離子淌度的測定與表征

發(fā)布時間:2018-03-24 11:42

  本文選題:全釩液流電池 切入點(diǎn):離子淌度 出處:《江蘇大學(xué)》2017年碩士論文


【摘要】:近年來,風(fēng)能、太陽能等可再生能源在能源危機(jī)以及環(huán)境污染的背景下得到快速發(fā)展。然而,這些可再生能源本質(zhì)上是間歇性的,只有發(fā)展出有效的、安全的、廉價(jià)的、可靠的儲能系統(tǒng)才能使可再生能源實(shí)用化。儲能技術(shù)在改善電網(wǎng)穩(wěn)健性、削峰平谷以及調(diào)節(jié)負(fù)載方面起著關(guān)鍵的作用。液流電池因具有不依賴于地理?xiàng)l件,可將功率密度與能量密度分開,適用于多種場合的應(yīng)用等特點(diǎn),被認(rèn)為是最有前景的儲能技術(shù)。其中全釩液流電池(VRFB)技術(shù)最為成熟,全釩液流電池由電極、交換膜和釩電解液組成,具有能量效率高,壽命長,無離子交叉污染且價(jià)格低廉等優(yōu)點(diǎn)。其可作為大型儲能裝置,將不穩(wěn)定的可再生能源轉(zhuǎn)化為化學(xué)能儲存起來,在使用時,電解液的化學(xué)能將轉(zhuǎn)化成電能輸出。然而,全釩液流電池在商業(yè)化應(yīng)用的過程中還面臨著一些技術(shù)問題,包括離子交換膜并不具有完美的選擇性以及較低的功率密度和能量密度。提高功率密度可以降低電池成本、提高能量效率且使電池變得對負(fù)載變化更有變通性。功率密度是由動力學(xué)極化,歐姆極化和傳質(zhì)極化決定的。歐姆極化和傳質(zhì)極化直接與耦合的傳質(zhì)與電荷傳輸有關(guān)。所以,發(fā)展有足夠大活性面積的多孔介質(zhì)電極以及加深對全釩液流電池中的傳輸過程和特性的理解具有重要的意義。然而,全釩液流電池是一個復(fù)雜的多尺度系統(tǒng),并且包含了在多孔電極中的多相流和電化學(xué)反應(yīng)。因此很少有關(guān)于全釩液流電池多孔電極內(nèi)傳輸特性以及對應(yīng)的對功率密度影響的研究。本文的立意與基本思路主要是針對全釩液流電池多孔電極內(nèi)傳質(zhì)特性表征的方法進(jìn)行創(chuàng)新性的改進(jìn)(主要體現(xiàn)在離子淌度的測定與表征上)。目前全釩液流電池使用的離子淌度表達(dá)式?jīng)]有包含離子間以及離子和溶劑之間的相互作用力。針對全釩液流電池電解液中活性離子淌度表達(dá)式的缺陷,本文基于全釩液流電池電極傳質(zhì)的理論框架,結(jié)合電化學(xué)原理與多孔介質(zhì)傳輸理論,提出了用不同電場強(qiáng)度下電池的極限電流之間的差異,來間接獲得真實(shí)的離子淌度的理論模型。本文結(jié)合外加平行電場與新設(shè)計(jì)的電池結(jié)構(gòu),設(shè)計(jì)并組裝了一套靈活創(chuàng)新的實(shí)驗(yàn)裝置,系統(tǒng)地研究了電解液濃度和電解液流量對離子淌度這一傳輸參數(shù)的影響。實(shí)驗(yàn)通過調(diào)節(jié)平行板間距分別為3.5 cm、7 cm以及控制外加電壓的大小分別為0 V、0.5 V、4 V、32 V來改變電場強(qiáng)度的大小和方向。實(shí)驗(yàn)控制發(fā)生傳質(zhì)極化側(cè)半電池釩離子濃度分別為0.1 M、0.2 M和0.4 M,或者控制電解液流量分別為6 m L/min、12 m L/min和18 m L/min。本文闡述了實(shí)驗(yàn)過程中遇到的并有效解決的四個實(shí)驗(yàn)難點(diǎn),即:電解液具有強(qiáng)腐蝕性、V2+離子極易被氧化而不能保證電池的SOC一致、集流板對外加電場產(chǎn)生的靜電屏蔽作用以及鋁箔板結(jié)構(gòu)缺陷對場強(qiáng)分布產(chǎn)生影響這四個棘手問題。提出的解決方法對類似的實(shí)驗(yàn)體系有積極的指導(dǎo)意義。實(shí)驗(yàn)結(jié)果表明,外加電場對全釩液流電池的極限電流密度影響較小,本文提出三種可能的原因來解釋這個現(xiàn)象。最后,在實(shí)驗(yàn)數(shù)據(jù)的基礎(chǔ)上,對一類特定工況范圍內(nèi)的離子淌度擬合了其與電解液濃度的關(guān)聯(lián)式,該公式體現(xiàn)了離子濃度和離子大小的影響。
[Abstract]:In recent years, wind energy, solar energy and other renewable energy in the rapid development of the energy crisis and environmental pollution under the background. However, these renewable energy is intermittent, only the development of an effective, safe, cheap, reliable storage system to make renewable energy utility energy storage technologies to improve the power grid. Conservatism plays a key role in regulating the load peak and Pinggu. Because of the flow battery is not dependent on the geographical conditions, can separate the power density and energy density, application of the model is suitable for various occasions, is considered the most promising energy storage technology. The vanadium redox flow battery (VRFB) the most mature technology, the vanadium redox flow battery is composed of electrode, membrane and vanadium electrolyte composition, with high energy efficiency, long life, the advantages of no ion cross contamination and low price. It can be used as a large storage device will be unstable The renewable energy into chemical energy stored, when in use, the electrolyte chemical energy into electrical energy output. However, in the process of commercial application is still confronted with some technical problems of VRB, including ion exchange membrane does not have the choice of perfect and low power density and energy density. Increasing power density can reduce battery costs, improve energy efficiency and make the battery become to load change more flexibility. The power density is determined by dynamic polarization, ohmic polarization and mass transfer polarization is determined. The ohmic polarization and mass transfer of direct coupling with mass transfer and charge transfer. Therefore, the development of a porous electrode enough the large active area and enhance the transmission process and characteristics of the battery in the vanadium redox flow understanding is of great significance. However, the vanadium redox flow battery is a complex multi scale system In the system, and includes the multiphase flow in porous electrode and the electrochemical reaction. So the research has little effect on the vanadium redox flow battery transmission characteristics in porous electrodes and the corresponding to the power density. And the basic ideas of this thesis is mainly improved method for VRB porous electrode in mass transfer characterization the innovative (mainly embodied in the determination and characterization of ion mobility on ion mobility). Current use of all vanadium redox flow battery contains no degree expression of interaction between ions and ions and solvent. Aiming at the defects of all vanadium flow of electrically active pool electrolyte ion mobility expressions, the theoretical framework of this article all vanadium redox flow battery electrode mass transfer based on the combination of electrochemical principle and porous media transmission theory, put forward the difference between the current limit under different electric field strength of the battery, to indirectly obtain true The theoretical model of ion mobility. This paper applied the parallel electric field and the new design of the cell structure, designed and constructed a set of experimental device of flexible and innovative, systematic study of the influence of the concentration of electrolyte and electrolyte flow on the ion mobility the transmission parameters. Experiments by adjusting the parallel plate spacing was 3.5 cm. 7 cm and control the size of the applied voltage were 0 V, 0.5 V, 4 V, 32 V to change the size and direction of the electric field intensity. The mass transfer side half cell vanadium ion concentration polarization control experiment were 0.1 M, 0.2 M and 0.4 M, or control of electrolyte flow was 6 m L/min. 12 m L/min and 18 m L/min. this paper describes four experiments and solve the difficulties encountered in the process that has strong corrosive electrolyte, V2+ ions can be easily oxidized and can not guarantee that the battery SOC, collector plate external electric field generated static Electric shielding and aluminum foil structural defects influence the four thorny problems on electric field distribution. The proposed solution has a positive guiding significance for similar experimental system. The experimental results show that the influence of limiting current density smaller electric field on all vanadium redox flow battery, this paper proposes three possible reasons to explain this. The phenomenon. Finally, based on the experimental data, ion mobility for a class of specific conditions within the scope of the degree of fitting with the electrolyte concentration correlation, the formula reflects the influence of concentration and size of ions.

【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM912

【參考文獻(xiàn)】

相關(guān)期刊論文 前9條

1 晏明;肖育江;;全釩液流電池(VRB)綜述[J];東方電機(jī);2012年05期

2 陳玉和;;儲能技術(shù)發(fā)展概況研究[J];能源研究與信息;2012年03期

3 賈旭平;;美國ZBB能源公司的鋅/溴液流儲能系統(tǒng)[J];電源技術(shù);2011年05期

4 龍飛;陳金慶;王保國;;全釩液流電池用離子交換膜的制備[J];天津工業(yè)大學(xué)學(xué)報(bào);2008年04期

5 梁艷;何平;于婷婷;楊定明;蔣琪英;戴亞堂;;添加劑對全釩液流電池電解液的影響[J];西南科技大學(xué)學(xué)報(bào);2008年02期

6 呂正中;胡嵩麟;羅絢麗;武增華;陳立泉;邱新平;;質(zhì)子交換膜對釩氧化還原液流電池性能的影響[J];高等學(xué);瘜W(xué)學(xué)報(bào);2007年01期

7 張華民,周漢濤,趙平,衣寶廉;儲能技術(shù)的研究開發(fā)現(xiàn)狀及展望[J];能源工程;2005年03期

8 趙平,張華民,周漢濤,胡經(jīng)緯,衣寶廉;多硫化鈉——溴化鈉氧化還原液流電池研究[J];電源技術(shù);2005年05期

9 衣寶廉,梁炳春,張恩浚,吳麗娟;鐵鉻氧化還原液流電池系統(tǒng)[J];化工學(xué)報(bào);1992年03期

相關(guān)博士學(xué)位論文 前2條

1 董波;非混相驅(qū)替過程的格子Boltzmann模擬[D];大連理工大學(xué);2011年

2 魯建華;基于格子Boltzmann方法的多孔介質(zhì)內(nèi)流動與傳熱的微觀模擬[D];華中科技大學(xué);2009年

相關(guān)碩士學(xué)位論文 前2條

1 張松;AMTEC通流性能研究[D];哈爾濱工程大學(xué);2011年

2 馬正軍;毛細(xì)蒸發(fā)器流場數(shù)值模擬研究[D];哈爾濱工程大學(xué);2009年

,

本文編號:1658148

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1658148.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶82a35***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
久久精品国产在热亚洲| 亚洲免费视频中文字幕在线观看| 一区二区三区在线不卡免费| 九九热精彩视频在线免费| 国产精品久久香蕉国产线| 亚洲欧洲日韩综合二区| 日韩欧美国产精品中文字幕| 在线观看中文字幕91| 黄色av尤物白丝在线播放网址| 五月婷婷欧美中文字幕| 日韩丝袜诱惑一区二区| 美国欧洲日本韩国二本道| 毛片在线观看免费日韩| 亚洲成人免费天堂诱惑| 国产av精品高清一区二区三区| 99秋霞在线观看视频| 人妻内射精品一区二区| 国产成人午夜av一区二区| 国产女优视频一区二区| 日韩日韩欧美国产精品| 国产精品免费无遮挡不卡视频| 国产精品午夜小视频观看| 一区二区三区四区亚洲专区| 亚洲欧美日韩熟女第一页| 色哟哟精品一区二区三区| 国产又粗又猛又爽色噜噜| 国产日产欧美精品大秀| 中国一区二区三区人妻| 视频一区中文字幕日韩| 91人妻久久精品一区二区三区| 九九热精彩视频在线免费| 午夜视频在线观看日韩| 99久免费精品视频在线观| 色一情一乱一区二区三区码| 都市激情小说在线一区二区三区| 国产精品白丝一区二区| 久久综合日韩精品免费观看| 亚洲天堂男人在线观看| 欧美日本道一区二区三区| 欧美精品日韩精品一区| 日韩一区二区三区高清在|