大型風(fēng)能發(fā)電機(jī)可靠性分配與評(píng)估方法研究
本文選題:風(fēng)力機(jī) 切入點(diǎn):故障模式 出處:《新疆大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著人們?nèi)找嬖龃髮?duì)可再生能源的需求,近年來(lái)風(fēng)力發(fā)電產(chǎn)業(yè)得到了飛速發(fā)展。然而風(fēng)力機(jī)的故障也在不斷的出現(xiàn),風(fēng)力機(jī)可靠性研究成了焦點(diǎn)。我國(guó)在風(fēng)力機(jī)可靠性研究方面起步較晚,風(fēng)力機(jī)的可靠性研究對(duì)風(fēng)電產(chǎn)業(yè)的健康發(fā)展意義重大。在國(guó)家自然科學(xué)基金項(xiàng)目:“大型風(fēng)能發(fā)電機(jī)組裂化趨勢(shì)穩(wěn)定性預(yù)測(cè)方法研究”(51565055)的資助下,本文主要研究風(fēng)力機(jī)的可靠性分配與評(píng)估。根據(jù)風(fēng)力機(jī)結(jié)構(gòu)和實(shí)際運(yùn)行情況,進(jìn)行可靠性建模,建立包含可修部分和不可修部分的系統(tǒng)的可靠性框圖。通過(guò)查找相關(guān)文獻(xiàn),總結(jié)出各組成零部件的可靠性函數(shù)分布類型,并且以表格形式列出風(fēng)力機(jī)各子系統(tǒng)的故障模式、影響及其危害分析,為風(fēng)力機(jī)可靠性分配和評(píng)估提供依據(jù)。根據(jù)風(fēng)力機(jī)具有多層次、失效因素多、模糊程度高等特點(diǎn),風(fēng)力機(jī)的可靠性分配矩陣標(biāo)度采用三標(biāo)度法的改進(jìn)模糊層次分配法。先建立模糊一致判斷矩陣,利用行和歸一法求出權(quán)重向量,最終得出對(duì)象層相對(duì)目標(biāo)層的權(quán)重。結(jié)合第二章計(jì)算出的風(fēng)力機(jī)子系統(tǒng)的權(quán)重,更改廣義成本函數(shù),并引入了風(fēng)力機(jī)運(yùn)行維護(hù)成本,得出了符合風(fēng)力機(jī)實(shí)際的總成本函數(shù),并且利用遺傳算法對(duì)風(fēng)力機(jī)進(jìn)行總成本優(yōu)化,優(yōu)化結(jié)果為風(fēng)力機(jī)設(shè)計(jì)提供寶貴意見(jiàn)。針對(duì)風(fēng)力機(jī)這種組成零件繁多、結(jié)構(gòu)復(fù)雜的產(chǎn)品,所有的組成單元進(jìn)行多次可靠性試驗(yàn)困難較大,因此本文對(duì)風(fēng)力機(jī)的零部件可靠性評(píng)估采用Bayes評(píng)估方法。并對(duì)風(fēng)力機(jī)零部件遵循的可靠性分布類型給出了相應(yīng)的Bayes評(píng)估方法和仿真論證。為了減少可靠性試驗(yàn)成本問(wèn)題,從風(fēng)力機(jī)零部件的可靠性信息入手,由零部件可靠性推倒至系統(tǒng)可靠性。將子系統(tǒng)上存在的并聯(lián)、表決的關(guān)系整合成串聯(lián)的組成部分,最后對(duì)大串聯(lián)進(jìn)行可靠性評(píng)估。風(fēng)力機(jī)不可修部分本文評(píng)估方法采用L-M評(píng)估法和Bayes方法。
[Abstract]:With the increasing demand for renewable energy, the wind power industry has developed rapidly in recent years. The research on the reliability of wind turbine has become the focus. The research on the reliability of wind turbine is of great significance to the healthy development of wind power industry. This paper mainly studies the reliability distribution and evaluation of wind turbine. According to the structure and actual operation of wind turbine, the reliability modeling is carried out, and the reliability block diagram of the system including repairable part and unrepairable part is established. The distribution types of reliability function of each component are summarized, and the failure modes, effects and hazard analysis of each subsystem of wind turbine are listed in the form of tables. It provides the basis for the reliability distribution and evaluation of the wind turbine. According to the characteristics of the wind turbine, such as multi-level, many failure factors, high degree of ambiguity and so on, The scale of reliability distribution matrix of wind turbine adopts the improved fuzzy hierarchical distribution method of three-scale method. Firstly, the fuzzy consistent judgment matrix is established, and the weight vector is obtained by row sum normalization method. Finally, the weight of the object layer relative to the target layer is obtained. Combined with the weight of the wind turbine sub-system calculated in the second chapter, the generalized cost function is changed, and the operating and maintenance cost of the wind turbine is introduced, and the total cost function in accordance with the actual wind turbine is obtained. The genetic algorithm is used to optimize the total cost of the wind turbine. The optimization results provide valuable advice for the wind turbine design. It is difficult for all components to carry out multiple reliability tests. In this paper, the Bayes method is used to evaluate the reliability of wind turbine components, and the corresponding Bayes evaluation method and simulation demonstration are given for the reliability distribution types of wind turbine components, in order to reduce the cost of reliability test. Starting with the reliability information of wind turbine components, the reliability of the components is pushed down to the reliability of the system. Finally, the reliability of large series is evaluated. L-M method and Bayes method are used to evaluate the unrepairable part of wind turbine.
【學(xué)位授予單位】:新疆大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM315
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫濤;孫文磊;何連英;;基于遺傳算法的風(fēng)力機(jī)可靠性優(yōu)化分配方法研究[J];可再生能源;2016年05期
2 沈雪石;陳英武;;軟件構(gòu)件可靠性與費(fèi)用分配最優(yōu)模型[J];國(guó)防科技大學(xué)學(xué)報(bào);2007年02期
3 張科施;李為吉;魏宏艷;;一種飛機(jī)頂層設(shè)計(jì)指標(biāo)最優(yōu)分配的新方法(英文)[J];Chinese Journal of Aeronautics;2006年03期
4 宗曉;王春潔;趙翔;;工程系統(tǒng)中可靠度的分配優(yōu)化算法[J];武漢理工大學(xué)學(xué)報(bào);2006年02期
5 劉飛,張為華;基于費(fèi)用函數(shù)的系統(tǒng)可靠性優(yōu)化分配方法[J];機(jī)械設(shè)計(jì)與制造;2005年11期
6 李永,胡向紅,喬箭;改進(jìn)的模糊層次分析法[J];西北大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年01期
7 劉強(qiáng),毛社平;可靠性評(píng)分分配法研究[J];水雷戰(zhàn)與艦船防護(hù);2004年02期
8 鹿祥賓,李曉鋼,林峰;復(fù)雜系統(tǒng)的可靠性分配和優(yōu)化[J];北京航空航天大學(xué)學(xué)報(bào);2004年06期
9 熊峻江,王甲峰,袁立,邱華勇,李慧涌;余度設(shè)計(jì)中的系統(tǒng)可靠性最優(yōu)分配模型[J];航空學(xué)報(bào);2004年01期
10 劉琦,馮靜,周經(jīng)倫;系統(tǒng)可靠性分配的綜合因子法[J];模糊系統(tǒng)與數(shù)學(xué);2002年03期
,本文編號(hào):1650768
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1650768.html