面向智能電網(wǎng)的大數(shù)據(jù)可信度量方法研究
本文選題:智能電網(wǎng) 切入點(diǎn):可信度量 出處:《華北電力大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:大數(shù)據(jù)技術(shù)作為國內(nèi)外學(xué)術(shù)界的研究熱點(diǎn),主要集中在大數(shù)據(jù)采集、預(yù)處理、分析及挖掘、展現(xiàn)等方面。目前數(shù)據(jù)預(yù)處理中大數(shù)據(jù)可信計(jì)算方法研究較少,亟需研究大數(shù)據(jù)可信性度量新方法、新技術(shù)。本文在大數(shù)據(jù)的可信性和質(zhì)量問題上展開研究。研究了數(shù)據(jù)源依賴關(guān)系、數(shù)據(jù)源之間的行為特點(diǎn)以及計(jì)算數(shù)據(jù)源之間的可信度值方法,提出了可信虛擬網(wǎng)絡(luò)概念,這種網(wǎng)絡(luò)不同于傳統(tǒng)互聯(lián)設(shè)備構(gòu)成的網(wǎng)絡(luò),其通過度量數(shù)據(jù)源之間的可信度而建立的層次化虛擬網(wǎng)絡(luò),權(quán)重值為數(shù)據(jù)源之間的可信度值。本文構(gòu)造了可信虛擬網(wǎng)絡(luò)生成算法,創(chuàng)新性地提出基于數(shù)據(jù)源依賴關(guān)系的層次化可信虛擬網(wǎng)絡(luò)模型。本文研究了基于大數(shù)據(jù)的數(shù)據(jù)源之間的可信性度量、數(shù)據(jù)源的可信性度量以及數(shù)據(jù)的可信性度量,它們之間相互關(guān)聯(lián)、相互制約構(gòu)成一個(gè)整體,創(chuàng)新性地提出大數(shù)據(jù)可信性度量模型。數(shù)據(jù)源間的可信度取決于數(shù)據(jù)源間的本地可信度與全局可信度。數(shù)據(jù)源的可信度是由數(shù)據(jù)源歷史數(shù)據(jù)的可信度期望值與推薦可信度期望值組合而成的。數(shù)據(jù)的可信度是通過計(jì)算不可靠數(shù)據(jù)對立事件的概率得出。數(shù)據(jù)源之間的可信度受數(shù)據(jù)源的可信度制約,數(shù)據(jù)源的可信度受數(shù)據(jù)的可信度和數(shù)據(jù)源之間的可信度雙重制約,數(shù)據(jù)的可信度受數(shù)據(jù)源的可信度和數(shù)據(jù)源之間的可信度雙重制約。本文將大數(shù)據(jù)可信度量模型引入智能電網(wǎng)中,給出智能電網(wǎng)大數(shù)據(jù)可信性度量方法。以電力系統(tǒng)大數(shù)據(jù)為例,驗(yàn)證可信性度量模型的有效性,滿足智能電網(wǎng)大數(shù)據(jù)的可信需求,為電力系統(tǒng)信息控制與決策提供可靠的數(shù)據(jù)支持。形成具有自主知識(shí)產(chǎn)權(quán)的大數(shù)據(jù)可信性度量方案,為我國今后大數(shù)據(jù)技術(shù)和可信性研究達(dá)到國際領(lǐng)先水平提供技術(shù)支撐。
[Abstract]:Big data technology, as a hot research topic in academic circles at home and abroad, mainly focuses on the collection, preprocessing, analysis, mining and presentation of big data. At present, there are few researches on trusted computing methods of large data in data preprocessing. There is an urgent need to study new methods and techniques of big data credibility measurement. This paper presents the concept of trusted virtual network, which is different from the network composed of traditional interconnected devices, based on the behavior characteristics of data sources and the method of calculating the reliability value between data sources. The hierarchical virtual network is built by measuring the credibility between data sources, and the weight value is the credibility value between the data sources. In this paper, a trusted virtual network generation algorithm is constructed. This paper proposes a hierarchical trusted virtual network model based on data source dependency. This paper studies the credibility metrics between data sources based on big data, the credibility metrics of data sources and the credibility metrics of data sources. They are interlinked and mutually constrained to form a whole, The credibility between data sources depends on the local and global credibility of the data sources. The credibility of the data source is derived from the reliability expectation and the extrapolation of the historical data of the data source. The reliability of the data is obtained by calculating the probability of the opposing events of unreliable data. The credibility between the data sources is restricted by the credibility of the data sources. The credibility of a data source is constrained by both the credibility of the data and the credibility of the data source. The reliability of data is restricted by the reliability of the data source and the credibility between the data source and the data source. In this paper, big data's credibility model is introduced into the smart grid, and then a method to measure the trustworthiness of the smart grid is given. Verify the validity of credibility measurement model, satisfy the credible demand of big data in smart grid, and provide reliable data support for power system information control and decision-making. To provide technical support for big data technology and credibility research to reach the international leading level in the future.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM76;TP311.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張巍;朱艷春;孫寶文;祝世偉;;基于模糊認(rèn)知圖和證據(jù)理論的FCM-DS信任模型[J];小型微型計(jì)算機(jī)系統(tǒng);2016年06期
2 孟建良;劉德超;;一種基于Spark和聚類分析的辨識(shí)電力系統(tǒng)不良數(shù)據(jù)新方法[J];電力系統(tǒng)保護(hù)與控制;2016年03期
3 張東霞;苗新;劉麗平;張焰;劉科研;;智能電網(wǎng)大數(shù)據(jù)技術(shù)發(fā)展研究[J];中國電機(jī)工程學(xué)報(bào);2015年01期
4 彭小圣;鄧迪元;程時(shí)杰;文勁宇;李朝暉;牛林;;面向智能電網(wǎng)應(yīng)用的電力大數(shù)據(jù)關(guān)鍵技術(shù)[J];中國電機(jī)工程學(xué)報(bào);2015年03期
5 高昆侖;辛耀中;李釗;孫煒;南貴林;陶洪鑄;趙保華;;智能電網(wǎng)調(diào)度控制系統(tǒng)安全防護(hù)技術(shù)及發(fā)展[J];電力系統(tǒng)自動(dòng)化;2015年01期
6 張紹武;林鴻飛;劉曉霞;竇彥昭;;基于概率的信任傳播模型[J];計(jì)算機(jī)科學(xué);2014年08期
7 趙秋月;左萬利;田中生;王英;;一種基于改進(jìn)D-S證據(jù)理論的信任關(guān)系強(qiáng)度評估方法研究[J];計(jì)算機(jī)學(xué)報(bào);2014年04期
8 馮登國;張敏;李昊;;大數(shù)據(jù)安全與隱私保護(hù)[J];計(jì)算機(jī)學(xué)報(bào);2014年01期
9 梁洪泉;吳巍;;基于動(dòng)態(tài)貝葉斯網(wǎng)絡(luò)的可信度量模型研究[J];通信學(xué)報(bào);2013年09期
10 張琳;劉婧文;王汝傳;王海艷;;基于改進(jìn)D-S證據(jù)理論的信任評估模型[J];通信學(xué)報(bào);2013年07期
相關(guān)博士學(xué)位論文 前2條
1 張彤;電力可信網(wǎng)絡(luò)體系及關(guān)鍵技術(shù)的研究[D];華北電力大學(xué);2013年
2 高會(huì)生;電力通信網(wǎng)可靠性研究[D];華北電力大學(xué)(河北);2009年
相關(guān)碩士學(xué)位論文 前2條
1 楊霽;基于狀態(tài)預(yù)測的電力系統(tǒng)狀態(tài)估計(jì)及不良數(shù)據(jù)檢測與辨識(shí)[D];西南交通大學(xué);2015年
2 萬至臻;基于MapReduce模型的并行計(jì)算平臺(tái)的設(shè)計(jì)與實(shí)現(xiàn)[D];浙江大學(xué);2008年
,本文編號(hào):1645280
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1645280.html