考慮鐵損的永磁同步電動機(jī)神經(jīng)網(wǎng)絡(luò)命令濾波控制
本文選題:鐵芯損耗 切入點:永磁同步電動機(jī) 出處:《青島大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:在交流傳動系統(tǒng)中,永磁同步電動機(jī)因其能量轉(zhuǎn)換效率高、調(diào)速范圍寬、轉(zhuǎn)矩慣性比大、動靜態(tài)特性好以及使用壽命長等特點已經(jīng)廣泛的應(yīng)用于農(nóng)業(yè)、工業(yè)等領(lǐng)域。然而,永磁同步電動機(jī)是一個耦合度強(qiáng)、擾動量大和參數(shù)時變的高度非線性系統(tǒng)。同時普遍存在于電動機(jī)系統(tǒng)中的鐵芯耗損問題會影響到電動機(jī)運行性能,特別地,從能源意義、環(huán)保意義以及產(chǎn)業(yè)意義來講,也將會影響某些電動機(jī)驅(qū)動對象諸如電動汽車等的整體性能。而且傳統(tǒng)控制策略大多研究的是沒有考慮鐵芯損耗的永磁同步電動機(jī)的模型。因此,優(yōu)化考慮鐵損的永磁同步電動機(jī)驅(qū)動系統(tǒng)的控制策略,已經(jīng)成為國內(nèi)外控制領(lǐng)域研究的熱點和難點。本文主要設(shè)計新型的考慮鐵損的永磁同步電動機(jī)驅(qū)動系統(tǒng)的控制策略。針對永磁同步電動機(jī)經(jīng)典控制策略中的不足之處,本文基于命令濾波技術(shù)和反步控制方法,研究了新型的自適應(yīng)神經(jīng)網(wǎng)絡(luò)位置跟蹤和速度調(diào)節(jié)控制策略。論文的主要研究成果如下:第一,研究了基于命令濾波技術(shù)和反步控制方法的非線性系統(tǒng)的自適應(yīng)神經(jīng)網(wǎng)絡(luò)跟蹤控制策略。利用神經(jīng)網(wǎng)絡(luò)逼近特性來處理系統(tǒng)中未知的非線性函數(shù)項,引入命令濾波技術(shù),使用命令濾波器處理虛擬控制函數(shù)以消除“計算爆炸”現(xiàn)象,采用反步控制方法來構(gòu)造自適應(yīng)神經(jīng)網(wǎng)絡(luò)控制器,并使用Lyapunov方法對系統(tǒng)進(jìn)行了穩(wěn)定性分析。第二,基于命令濾波技術(shù)和神經(jīng)網(wǎng)絡(luò)逼近特性,并采用自適應(yīng)反步控制方法構(gòu)造了考慮鐵損的永磁同步電動機(jī)位置跟蹤控制器。利用神經(jīng)網(wǎng)絡(luò)逼近特性來處理系統(tǒng)中未知的非線性函數(shù)項,通過命令濾波器處理虛擬控制函數(shù)以消除“計算爆炸”現(xiàn)象,采用反步控制方法構(gòu)造閉環(huán)系統(tǒng)的位置跟蹤控制器,有效的避免了電動機(jī)系統(tǒng)參數(shù)時變和負(fù)載擾動等未知因素的影響,應(yīng)用Lyapunov方法證明了系統(tǒng)的穩(wěn)定性。與基于動態(tài)面技術(shù)控制方法進(jìn)行對比仿真實驗,驗證了應(yīng)用命令濾波技術(shù)所構(gòu)造的位置跟蹤控制器能夠更好地跟蹤設(shè)定信號以達(dá)到期望的控制目標(biāo)。第三,研究了基于命令濾波誤差補償機(jī)制的考慮鐵損的永磁同步電動機(jī)電機(jī)的速度調(diào)節(jié)控制器。利用神經(jīng)網(wǎng)絡(luò)逼近特性對系統(tǒng)中的非線性函數(shù)進(jìn)行有效逼近,通過命令濾波器消除“計算爆炸”現(xiàn)象,引入濾波誤差補償信號減小了命令濾波器產(chǎn)生的濾波誤差;贛atlab/Simulink仿真實驗環(huán)境,保證閉環(huán)系統(tǒng)信號完全有界,證明了所構(gòu)造控制器能夠確保系統(tǒng)實現(xiàn)良好的控制效果。
[Abstract]:In AC drive system, permanent magnet synchronous motor because of its high energy conversion efficiency, wide range of speed, torque inertia ratio, dynamic characteristics of the application of good static characteristic and long service life has been widely in agriculture, industry and other fields. However, the permanent magnet synchronous motor is a strong coupling, nonlinear perturbation large and time-varying parameters. The core loss also exists in the motor system will affect the operation performance of the motor, in particular, from the energy industry and environmental protection significance, meaning sense, will also affect the overall performance of the driving motor of certain objects such as electric cars. But most of the traditional control strategy is not permanent magnet synchronous motor considering iron loss model. Therefore, the optimization of permanent magnet synchronous motor drive system control strategy considering iron loss, has become the domestic and foreign control. The hot and difficult area of research. This paper mainly consider the design of control strategy of permanent magnet synchronous motor drive system of the new type of loss. For permanent magnet synchronous motor control strategies in the classical deficiencies, the command filter and backstepping control method based on adaptive neural network model of position and speed control strategy. The main research results of this paper are as follows: first, the study of adaptive neural network command filtering techniques and control methods of backstepping nonlinear system control strategy based on nonlinear function. By using the neural network approximation properties to process system unknown, introducing command filter technology, using the command filter virtual control function to eliminate the "computation explosion" the phenomenon, using backstepping control method to construct the adaptive neural network controller, and the system using Lyapunov method For the stability analysis. Second, command filter and neural network approximation based on the characteristic, and the adaptive backstepping control method to construct the position of permanent magnet synchronous motor considering iron loss tracking controller. Nonlinear function approximation using neural network properties to process system unknown, through the command filter processing the virtual control function to eliminate the "computation explosion" phenomenon, using backstepping control method to construct the closed-loop position tracking controller, effectively avoid the influence of motor parameter variation and load disturbance and other unknown factors, the application of Lyapunov method to prove the stability of the system. And the dynamic control method which is based on the comparative experiments show that the structure of the application command filter technology position tracking control is better able to track the signal to achieve the desired controller. Third, on the base Considering the motor of permanent magnet synchronous motor speed regulating controller loss to the command filter error compensation mechanism. By using the neural network approximation properties of nonlinear functions in the system for effective approximation, computational explosion phenomenon ", through the command filter to eliminate the filter error compensation signal reduces the filtering error command filter produces Matlab/Simulink simulation environment. Based on the closed-loop system signal completely bounded, prove that the constructed controller can ensure the system to achieve good control effect.
【學(xué)位授予單位】:青島大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP273;TM341
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王慶龍;張興;張崇巍;;永磁同步電機(jī)矢量控制雙滑模模型參考自適應(yīng)系統(tǒng)轉(zhuǎn)速辨識[J];中國電機(jī)工程學(xué)報;2014年06期
2 李政;胡廣大;崔家瑞;劉廣一;;永磁同步電機(jī)調(diào)速系統(tǒng)的積分型滑模變結(jié)構(gòu)控制[J];中國電機(jī)工程學(xué)報;2014年03期
3 孫靜;張承慧;裴文卉;崔納新;李珂;;考慮鐵損的電動汽車用永磁同步電機(jī)Hamilton鎮(zhèn)定控制[J];控制與決策;2012年12期
4 李耀華;馬建;劉晶郁;余強(qiáng);;電動汽車用永磁同步電機(jī)直接轉(zhuǎn)矩控制電壓矢量選擇策略[J];電機(jī)與控制學(xué)報;2012年04期
5 趙君;劉衛(wèi)國;駱光照;張文婧;;永磁同步電機(jī)神經(jīng)網(wǎng)絡(luò)逆解耦控制研究[J];電機(jī)與控制學(xué)報;2012年03期
6 楊建飛;胡育文;;永磁同步電機(jī)最優(yōu)直接轉(zhuǎn)矩控制[J];中國電機(jī)工程學(xué)報;2011年27期
7 林輝;王永賓;計宏;;基于反饋線性化的永磁同步電機(jī)模型預(yù)測控制[J];測控技術(shù);2011年03期
8 魯文其;胡育文;梁驕雁;黃文新;;永磁同步電機(jī)伺服系統(tǒng)抗擾動自適應(yīng)控制[J];中國電機(jī)工程學(xué)報;2011年03期
9 王斌;王躍;王兆安;;空間矢量調(diào)制的永磁同步電機(jī)直接轉(zhuǎn)矩控制[J];電機(jī)與控制學(xué)報;2010年06期
10 蔡智慧;唐忠;馬士英;;基于RBF神經(jīng)網(wǎng)絡(luò)的永磁同步電機(jī)在線辨識與模型參考自適應(yīng)控制[J];華東電力;2008年02期
相關(guān)博士學(xué)位論文 前3條
1 樊明迪;永磁同步電機(jī)直接轉(zhuǎn)矩控制技術(shù)研究[D];西北工業(yè)大學(xué);2014年
2 李珂;電動汽車高效快響應(yīng)電驅(qū)動系統(tǒng)控制策略研究[D];山東大學(xué);2007年
3 于海生;交流電機(jī)的能量成型與非線性控制研究[D];山東大學(xué);2006年
相關(guān)碩士學(xué)位論文 前1條
1 何國慶;基于自適應(yīng)模糊控制的永磁同步電機(jī)調(diào)速系統(tǒng)研究[D];華中科技大學(xué);2013年
,本文編號:1642974
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1642974.html