基于電場(chǎng)逆問題的三相D-dot傳感器設(shè)計(jì)與測(cè)量系統(tǒng)研究
本文選題:電場(chǎng)逆問題 切入點(diǎn):D-dot電場(chǎng)傳感器 出處:《重慶大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
【摘要】:針對(duì)未來特高壓和智能電網(wǎng)的發(fā)展需求,需要一種非接觸、小型化和智能化的電壓互感器。目前,D-dot電場(chǎng)傳感器的研究主要解決了單相測(cè)量的問題,而在三相輸電線路中,由于電場(chǎng)耦合,將導(dǎo)致測(cè)量系統(tǒng)的電容矩陣擴(kuò)大、電場(chǎng)分布的改變,D-dot電場(chǎng)傳感器分別運(yùn)行在單相線路和三相的某一相線路時(shí),測(cè)量結(jié)果將有所不同,正是這種區(qū)別的存在,在三相D-dot電場(chǎng)傳感器設(shè)計(jì)時(shí),需要考慮分布參數(shù)和鄰相電場(chǎng)影響;趫(chǎng)路耦合法實(shí)現(xiàn)對(duì)單相D-dot電場(chǎng)傳感器參數(shù)的優(yōu)化;通過三相D-dot電場(chǎng)傳感器獲得空間電場(chǎng),再運(yùn)用電場(chǎng)逆問題求得三相電壓的非接觸測(cè)量。全文研究內(nèi)容包含以下幾個(gè)部分:(1)提出了通過電場(chǎng)傳感器測(cè)得空間電場(chǎng),再運(yùn)用電場(chǎng)逆問題求得導(dǎo)線電荷,最后通過模擬電荷法得到電位的三相電壓非接觸測(cè)量方法。研究了電場(chǎng)耦合電場(chǎng)傳感器的基本測(cè)量原理,為傳感器的設(shè)計(jì)與優(yōu)化提供了理論基礎(chǔ);針對(duì)復(fù)雜空間三相電磁場(chǎng)分布情況,運(yùn)用A?來表述對(duì)其定解問題必須滿足的磁矢量位函數(shù)方程和電位函數(shù)方程,建立了基于電位移矢量的場(chǎng)路直接耦合數(shù)學(xué)模型。(2)為了設(shè)計(jì)出適用于三相輸電線下的空間電場(chǎng)測(cè)量的D-dot電場(chǎng)傳感器,提出運(yùn)用有限元仿真軟件Maxwell和電路仿真軟件Simplorer建立D-dot電場(chǎng)傳感器的聯(lián)合仿真模型,利用場(chǎng)路耦合協(xié)同仿真技術(shù),能夠有效地分析出電場(chǎng)傳感器與等效電路的相互耦合特性,達(dá)到對(duì)場(chǎng)傳感器參數(shù)設(shè)計(jì)與優(yōu)化。(3)設(shè)計(jì)了用于三路傳感器信號(hào)同步采集的硬件電路,實(shí)現(xiàn)了傳感器輸出電壓信號(hào)的數(shù)字化;采用LabVIEW技術(shù)將電壓波形通過WIFI無線網(wǎng)絡(luò)構(gòu)建D-dot電壓互感器模擬系統(tǒng),實(shí)現(xiàn)了電壓數(shù)據(jù)的圖形化顯示、分析和保存。(4)搭建了用于對(duì)D-dot電場(chǎng)傳感器進(jìn)行校準(zhǔn)的單相試驗(yàn)平臺(tái),對(duì)電場(chǎng)傳感器進(jìn)行了相位誤差、線性度、穩(wěn)態(tài)及暫態(tài)校準(zhǔn)實(shí)驗(yàn);同時(shí),還搭建了三相電壓互感器模擬試驗(yàn)平臺(tái),試驗(yàn)結(jié)果表明,D-dot傳感器具有較高的測(cè)量精度和良好的頻率特性;系統(tǒng)實(shí)現(xiàn)了多個(gè)電場(chǎng)信號(hào)的同步采集,信號(hào)無失真、無延遲,同步性也較好。
[Abstract]:A non-contact, miniaturized and intelligent voltage transformer is needed for the development of UHV and smart grid in the future. At present, the research of D-dot electric field sensor mainly solves the problem of single-phase measurement, but in three-phase transmission line, Because of the electric field coupling, the capacitance matrix of the measurement system will be enlarged, and the change of electric field distribution will cause the measurement results to be different when the electric field sensor operates in the single-phase line and the three-phase line respectively. In the design of three-phase D-dot electric field sensor, the influence of distribution parameters and adjacent phase electric field should be considered. The parameters of single-phase D-dot electric field sensor are optimized based on field-circuit coupling method, and the space electric field is obtained by three-phase D-dot electric field sensor. The non-contact measurement of three-phase voltage is obtained by using the inverse problem of electric field. The main contents of this paper are as follows: (1) it is proposed that the space electric field can be measured by electric field sensor, and then the conductor charge can be obtained by using the inverse problem of electric field. Finally, the three-phase voltage non-contact measurement method of potential is obtained by simulating charge method. The basic measurement principle of electric field coupled electric field sensor is studied, which provides a theoretical basis for the design and optimization of the sensor. In view of the distribution of three-phase electromagnetic field in complex space, A? To express the magnetic vector potential function equation and the potential function equation which must be satisfied for the definite solution of the problem, In order to design a D-dot electric field sensor suitable for measuring the space electric field under three-phase transmission line, a mathematical model of direct coupling of field path based on electric displacement vector is established in order to design a D-dot electric field sensor. A joint simulation model of D-dot electric field sensor is established by using finite element simulation software Maxwell and circuit simulation software Simplorer. The coupling characteristics between electric field sensor and equivalent circuit can be effectively analyzed by using field-circuit coupling cooperative simulation technology. To achieve the design and optimization of field sensor parameters, a hardware circuit for synchronous acquisition of three sensor signals is designed, and the output voltage signal of the sensor is digitized. Using LabVIEW technology to construct D-dot voltage transformer simulation system through WIFI wireless network, realize the graphical display of voltage data, analyze and save. Build a single-phase test platform for calibrating D-dot electric field sensor. The phase error, linearity, steady-state and transient calibration experiments of the electric field sensor are carried out. At the same time, a three-phase voltage transformer simulation test platform is built. The experimental results show that the D-dot sensor has high measurement accuracy and good frequency characteristics. The system realizes synchronous acquisition of multiple electric field signals, which has no distortion, no delay and good synchronization.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TM933.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高參;汪金剛;楊杰;彭鵠;馬俊;;基于電場(chǎng)逆問題的D-dot電壓傳感器的設(shè)計(jì)與仿真[J];電工技術(shù)學(xué)報(bào);2016年04期
2 王啟武;李炎新;石立華;;納秒電磁脈沖測(cè)量用D-dot探頭設(shè)計(jì)及實(shí)驗(yàn)[J];強(qiáng)激光與粒子束;2015年11期
3 孫振國;蔡棟;李東;張文增;陳強(qiáng);;車輪輻板裂紋渦流檢測(cè)探頭的提離抑制研究[J];機(jī)電工程;2015年11期
4 肖婉;;STM32F37XX微控制器I~2C接口在三相電參數(shù)采集模塊中的應(yīng)用[J];兵工自動(dòng)化;2014年09期
5 何為;羅睿希;汪金剛;冉鵬;汪泉弟;侯興哲;周孔均;;自積分式D-dot電壓互感器原理及試驗(yàn)研究[J];中國電機(jī)工程學(xué)報(bào);2014年15期
6 潘超;王澤忠;李海龍;劉連光;張科;郭若穎;;基于瞬態(tài)場(chǎng)路耦合模型的變壓器直流偏磁計(jì)算[J];電工技術(shù)學(xué)報(bào);2013年05期
7 趙魯;李耀華;葛瓊璇;任晉旗;馬遜;;單相整流變壓器場(chǎng)路耦合分析[J];中國電機(jī)工程學(xué)報(bào);2012年S1期
8 梁志瑞;董維;劉文軒;黃佳珍;吳群雄;;電磁式電壓互感器的鐵磁諧振仿真研究[J];高壓電器;2012年11期
9 衛(wèi)兵;方東凡;卿燕玲;孫奇志;豐樹平;楊禮兵;;亞納秒脈沖高電壓測(cè)量探頭[J];強(qiáng)激光與粒子束;2012年06期
10 關(guān)曉存;雷彬;李治源;;耦合運(yùn)動(dòng)多級(jí)感應(yīng)線圈炮三維機(jī)電耦合模型[J];固體力學(xué)學(xué)報(bào);2012年02期
相關(guān)博士學(xué)位論文 前6條
1 李振華;電子式互感器性能評(píng)價(jià)體系關(guān)鍵技術(shù)研究[D];華中科技大學(xué);2014年
2 董義華;基于電子式互感器的智能行波測(cè)距系統(tǒng)[D];山東大學(xué);2013年
3 王紅星;電容分壓型光學(xué)電壓互感器研究[D];哈爾濱工業(yè)大學(xué);2010年
4 王超;水溶性量子點(diǎn)及量子點(diǎn)/二氧化硅納米粒子的合成及應(yīng)用[D];吉林大學(xué);2010年
5 張玉華;基于場(chǎng)—路耦合模型的渦流探頭設(shè)計(jì)及提離干擾抑制方法研究[D];國防科學(xué)技術(shù)大學(xué);2010年
6 肖冬萍;特高壓交流輸電線路電磁場(chǎng)三維計(jì)算模型與屏蔽措施研究[D];重慶大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 趙帥帥;基于STM32的波浪能發(fā)電裝置離岸監(jiān)測(cè)系統(tǒng)設(shè)計(jì)[D];青島理工大學(xué);2014年
2 李軍;高電壓輸電線路雷電監(jiān)測(cè)系統(tǒng)研究[D];重慶大學(xué);2014年
3 羅睿希;基于電場(chǎng)耦合原理的電壓測(cè)量裝置設(shè)計(jì)研究[D];重慶大學(xué);2014年
4 譚霞;基于MSP430F5438的電能質(zhì)量分析儀設(shè)計(jì)[D];湖南大學(xué);2014年
5 張愷;基于UDP的可靠文件傳輸協(xié)議的設(shè)計(jì)與實(shí)現(xiàn)[D];西安電子科技大學(xué);2014年
6 王海榮;變頻感應(yīng)電機(jī)場(chǎng)路耦合仿真和鐵耗研究[D];浙江大學(xué);2014年
7 王t;基于場(chǎng)路結(jié)合的永磁同步電機(jī)分析與優(yōu)化[D];浙江大學(xué);2013年
8 林冠吾;智能電網(wǎng)故障定位及在線監(jiān)測(cè)系統(tǒng)研究[D];蘭州理工大學(xué);2012年
9 劉聰漢;工頻電場(chǎng)測(cè)量方法及安全警示系統(tǒng)設(shè)計(jì)研究[D];重慶大學(xué);2012年
10 李霞;配電變壓器容量及損耗在線檢測(cè)系統(tǒng)的設(shè)計(jì)與研究[D];重慶大學(xué);2012年
,本文編號(hào):1605546
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1605546.html