基于隨機褶皺結構的柔性可拉伸聚合物太陽能電池研究
發(fā)布時間:2018-03-11 03:29
本文選題:聚合物太陽能電池 切入點:柔性 出處:《吉林大學》2017年碩士論文 論文類型:學位論文
【摘要】:可穿戴電子器件由于具備廣闊的應用前景,近幾年來已經成為人們生活中常見的設備。隨著人們對可穿戴電子器件的舒適度和方便性能的追求不斷提高,可拉伸可穿戴電子器件吸引了人們大量的關注和研究。在所有的電子器件中能量供給系統(tǒng)是不可缺少的一個環(huán)節(jié),那么,可拉伸有機聚合物太陽能電池作為可拉伸電子器件的供能系統(tǒng)展現(xiàn)出了很大的應用前途,例如為可穿戴電子器件,電子皮膚,可拉伸顯示等提供能量。聚合物太陽能電池有高效率,重量輕,無污染和柔性襯底兼容性好等優(yōu)點。從其結構出發(fā),到目前為止具有彈性的聚合物吸收層還沒有被成功地研制,所以本質可拉伸聚合物有機太陽能電池還沒有被報道。目前的可拉伸太陽能電池都是基于隨機褶皺輔助機制和彈簧狀的。彈簧狀的可拉伸聚合物太陽能電池由于制備工藝不成熟,光照射面積小等缺點的限制,很少被研究者們關注。褶皺輔助型可拉伸電池最為常見,其基本原理就是把其本身的柔性轉換為可拉伸性。目前為止,報道的可拉伸聚合物太陽能電池的效率最高為4%,最大拉伸度為400%和循環(huán)拉伸次數(shù)為22次。為了進一步提高可拉伸太陽能電池的效率和拉伸度,我們制備了基于高效的吸收層材料PCDTBT:PC71BM的隨機褶皺輔助型可拉伸聚合物太陽能電池。首先我們制備了超薄高光學透過率的柔性襯底,其厚度僅有11μm左右,在此襯底上制備的整個聚合物太陽能電池的厚度不超過11.4μm;隨后把超薄器件粘貼在預拉伸的彈性體上,釋放拉力后完成了可拉伸聚合物太陽能電池的制備。超薄器件增加了器件的柔性,這有利于我們的褶皺輔助可拉伸器件的最大拉伸度的提升。第二,我們用高透過的超薄金屬柔性透明電極代替常用的PEDOT:PSS聚合物柔性電極,其在相同的透過率下,電導率相對于PEDOT:PSS柔性電極提高了一個數(shù)量級,從而提高了電池的短路電流。最終我們的器件在70%的最大拉伸度下,其效率為5.8%,這個效率是目前報道的可拉伸聚合物太陽能電池的最高效率。機械穩(wěn)定性也是可拉伸聚合物太陽能電池的一個趨向實際應用的關鍵的性能指標。我們通過在超薄柔性聚合器件的底電極和彈性支撐體之間蒸鍍一層疏松的小分子材料NPB作為犧牲層,來阻擋彈性體的粘性對器件底電極的破壞,從而我們的電池的循環(huán)拉伸的次數(shù)相對于之前報道的可拉伸聚合物太陽能電池提高了將近20倍。我們的器件的制備方法簡單有效,為以后的可拉伸電子器件的發(fā)展提供了一種有效的途徑。
[Abstract]:Wearable electronic devices have become a common device in people's lives in recent years due to their wide application prospects. With the increasing pursuit of wearable electronic devices' comfort and convenience performance, wearable electronic devices have become more and more popular. Tensile wearable electronic devices have attracted a lot of attention and research. Energy supply system is an indispensable part of all electronic devices, so, As an energy supply system for extensible electronic devices, extensible organic polymer solar cells have shown great application prospects, such as wearable electronic devices, electronic skin, Polymer solar cells have the advantages of high efficiency, light weight, pollution-free and flexible substrate compatibility. So essentially extensible polymer organic solar cells have not yet been reported. Current extensible solar cells are based on random fold assist mechanisms and spring-shaped. Spring-shaped extensible polymer solar cells. The preparation process is immature, The limitations of light exposure, such as the small area of light exposure, are rarely noticed by researchers. Folding assisted extensible batteries are most common, and the basic principle is to convert their own flexibility to extensibility. In order to further improve the efficiency and tensile strength of extensible polymer solar cells, the maximum efficiency, the maximum tensile degree and the number of cycles of stretching are 4, 400% and 22 cycles, respectively, reported in this paper. We have prepared a random fold assisted polymer solar cell based on high efficiency absorbent material PCDTBT:PC71BM. Firstly, we have prepared a flexible substrate with ultra-thin and high optical transmittance, the thickness of which is only about 11 渭 m. The thickness of the entire polymer solar cell prepared on this substrate does not exceed 11.4 渭 m; the ultra-thin device is then pasted onto the pre-tensile elastomer, After releasing the tensile force, the fabrication of the extensible polymer solar cell is completed. The ultra-thin device increases the flexibility of the device, which is conducive to the maximum tensile strength of our pleated auxiliary extensible device. Second, We replace the conventional PEDOT:PSS polymer flexible electrode with ultra-thin metal flexible transparent electrode with high transmittance. The conductivity of the flexible electrode is increased by an order of magnitude compared with that of the PEDOT:PSS flexible electrode at the same transmittance. This increases the short circuit current of the battery. Finally, our device reaches a maximum tensile strength of 70%. Its efficiency is 5.8, which is the highest efficiency of extensible polymer solar cells reported at present. Mechanical stability is also a key performance index of extensible polymer solar cells towards practical application. By vaporizing a loose small molecular material, NPB, between the bottom electrode and the elastic support of the ultra-thin flexible polymer device, as the sacrificial layer, To block the damage of the elastomer's stickiness to the bottom electrode of the device, so that the number of cycles of stretching our batteries is nearly 20 times higher than that of the previously reported extensible polymer solar cells. Our fabrication method is simple and effective. It provides an effective way for the development of extensible electronic devices in the future.
【學位授予單位】:吉林大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM914.4
【參考文獻】
相關期刊論文 前4條
1 顧為東;;中國霧霾特殊形成機理研究[J];宏觀經濟研究;2014年06期
2 顧錦華;鐘志有;何翔;孫奉婁;陳首部;;有機太陽能電池內部串并聯(lián)電阻對器件光伏性能的影響[J];中南民族大學學報(自然科學版);2009年01期
3 陳明艷;姜顯政;黃汝紅;;淺析酸雨的形成、危害及防治措施[J];廣東微量元素科學;2009年01期
4 戴君虎,晏磊;溫室效應及全球變暖研究簡介[J];世界環(huán)境;2001年04期
相關重要報紙文章 前1條
1 施芳;;可再生能源的家族[N];人民日報;2009年
,本文編號:1596392
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1596392.html
最近更新
教材專著