納米ZnO薄膜摻雜改性及其在太陽(yáng)能電池中的應(yīng)用研究
本文關(guān)鍵詞: 太陽(yáng)能電池 ZnO材料 摻雜改性 第一性原理 磁控濺射法 前電極 出處:《江蘇大學(xué)》2017年博士論文 論文類(lèi)型:學(xué)位論文
【摘要】:光伏發(fā)電量在21世紀(jì)末估計(jì)將占到總發(fā)電量的一半以上,成為新一代清潔能源的發(fā)電主力,而薄膜太陽(yáng)能電池在光伏電池中的占比正逐年上升。目前能源主要仍是由化石燃料提供,化石燃料在使用過(guò)程中會(huì)對(duì)環(huán)境造成較大污染,而且終會(huì)耗盡,因此太陽(yáng)能作為取之不盡的能源并以“環(huán)境友好型”的特點(diǎn)從而將逐漸取代化石能源。然而現(xiàn)今太陽(yáng)能電池一直存在著制備成本高、制備工藝復(fù)雜等問(wèn)題;幾種研究較為成熟的化合物太陽(yáng)能電池,如砷化鎵、碲化鎘和銅銦鎵硒等,由于砷和鎘屬于重金屬對(duì)環(huán)境存在污染,銅銦鎵硒材料來(lái)源有限等原因一直制約著太陽(yáng)能電池向民用化的發(fā)展。ZnO作為一種新型半導(dǎo)體材料,在壓電傳感器、顯示器、發(fā)光器件和太陽(yáng)能電池方面都具有廣闊的應(yīng)用前景,而且ZnO屬于環(huán)保無(wú)污染材料,而且自然界中儲(chǔ)量豐富,在太陽(yáng)能電池方面的應(yīng)用具有巨大的潛力。本文以ZnO薄膜太陽(yáng)能電池為研究目標(biāo),通過(guò)第一性原理理論對(duì)ZnO的n型和p型摻雜材料及相關(guān)濃度進(jìn)行分析,找到較適合用作太陽(yáng)能電池n型層、中間層和p型層的ZnO摻雜類(lèi)型;然后通過(guò)磁控濺射的方式制備了 n型和p型摻雜ZnO薄膜,分析了其濺射功率、工作壓強(qiáng)、襯底溫度和以及氣體氛圍等重要工藝參數(shù)對(duì)薄膜結(jié)晶質(zhì)量、表面形貌、導(dǎo)電特性和光學(xué)特性的影響;最后制備了 ZnO同質(zhì)結(jié)和異質(zhì)結(jié)太陽(yáng)能電池,研究了中間層以及前電極對(duì)太陽(yáng)能電池光伏性能的影響。本論文所做的主要工作和取得的研究成果如下:1.構(gòu)建A1摻雜ZnO和In摻雜ZnO理論模型,發(fā)現(xiàn)兩結(jié)構(gòu)都屬于服從費(fèi)米分布的n型簡(jiǎn)并半導(dǎo)體,且A1摻ZnO的導(dǎo)電載流子濃度高達(dá)2.81×1021cm-3,可見(jiàn)光區(qū)理論透射率達(dá)90%,因此Al摻ZnO較適合應(yīng)用于太陽(yáng)能電池n結(jié)和透明導(dǎo)電電極。在對(duì)ZnO進(jìn)行p性改性時(shí)發(fā)現(xiàn)采用Al-2N共摻結(jié)構(gòu)的雜質(zhì)能級(jí)較淺,Al-2N共摻ZnO結(jié)構(gòu)中受主的自補(bǔ)償作用得到降低,實(shí)現(xiàn)了 ZnO的p型轉(zhuǎn)化;本文首次研究了稀土元素Eu的摻入對(duì)AZO在可見(jiàn)光區(qū)的吸收率影響,探索Eu摻AZO結(jié)構(gòu)在太陽(yáng)能電池中間層有無(wú)應(yīng)用的可能性;2.采用磁控濺射的實(shí)驗(yàn)方法制備了 Al摻ZnO的n型薄膜、Al,N共摻的p型薄膜和Eu,A1共摻的ZnO作為太陽(yáng)能電池中間層薄膜,與仿真的理論結(jié)果相結(jié)合,得到如下結(jié)果:(1)對(duì)薄膜制備關(guān)鍵工藝參數(shù)進(jìn)行了研究,發(fā)現(xiàn)在濺射功率為120W、工作壓強(qiáng)為2.0Pa及襯底溫度為150℃時(shí)獲得較好的結(jié)晶質(zhì)量及光電特性;此外,制備薄膜的晶格常數(shù)、載流子濃度及透射率實(shí)驗(yàn)值變化趨勢(shì)與仿真結(jié)果具有較好的一致性;(2)分析了 ZnO的p型轉(zhuǎn)化機(jī)理,發(fā)現(xiàn)通過(guò)施主-受主共摻的方法可有效降低晶體的馬德隆能量,制備一定濃度N20氣氛下ZnOp型薄膜的透射率約為90%;發(fā)現(xiàn)達(dá)到最高性能的p型ZnO薄膜中Al、N比例約為1:2,與仿真結(jié)果具有較好的一致性;(3)制備了 Eu,A1共摻ZnO薄膜,發(fā)現(xiàn)ITO襯底上薄膜具有良好的導(dǎo)電性及透光性,并且在可見(jiàn)光區(qū)存在吸收峰,與理論計(jì)算中結(jié)果相一致;3.根據(jù)上述理論與實(shí)驗(yàn)相結(jié)合的結(jié)果,本文設(shè)計(jì)了不同中間層及前電極對(duì)ZnO太陽(yáng)能結(jié)構(gòu)光伏性能的影響:(1)研究了不同中間層對(duì)以Ti/Ag作為前電極的ZnO同質(zhì)結(jié)(p型Al,N共摻ZnO/n型A1摻ZnO)及異質(zhì)結(jié)(p型Si/n型A1摻ZnO)太陽(yáng)能電池結(jié)構(gòu)光伏性能的影響,結(jié)果發(fā)現(xiàn):Eu,A1共摻ZnO作為太陽(yáng)能電池中間層時(shí)具有最高的光電轉(zhuǎn)換率,其中異質(zhì)結(jié)太陽(yáng)電池為1.467%,同質(zhì)結(jié)太陽(yáng)電池為0.426%,與理論預(yù)測(cè)相吻合;(2)研究了不同金屬和AZO/金屬/AZO結(jié)構(gòu)前電極對(duì)p-Si/Eu,A1共摻ZnO/n-AZO異質(zhì)結(jié)太陽(yáng)能電池光電轉(zhuǎn)換率的影響,發(fā)現(xiàn)Cr/Ni金屬用作前電極時(shí)太陽(yáng)電池光電轉(zhuǎn)換率達(dá)6.68%,AZO/Cr/AZO用作前電極時(shí)太陽(yáng)電池光電轉(zhuǎn)換率高達(dá)7.11%;以上研究不僅對(duì)ZnO納米薄膜的實(shí)驗(yàn)過(guò)程、制備機(jī)制、晶體結(jié)構(gòu)、電學(xué)性質(zhì)、光學(xué)特性等進(jìn)行了較為系統(tǒng)的研究,也為ZnO薄膜型太陽(yáng)能電池的實(shí)際應(yīng)用提供了理論依據(jù)和實(shí)現(xiàn)可能。
[Abstract]:Photovoltaic power generation at the end of twenty-first Century is estimated to account for more than half of the total generating capacity, as a new generation of clean energy generation main, and thin film solar cells in photovoltaic cell in the proportion is rising year by year. The energy is mainly from fossil fuels, fossil fuels will cause great pollution to the environment in the process of using. It will be used up, so the solar energy as an inexhaustible source of energy and the characteristics of "environment friendly" which will gradually replace fossil energy. However, there has been a solar cell preparation cost is high, the problem of complex preparation process; compound solar cell, several mature study such as GaAs, cadmium telluride and copper indium gallium selenium, arsenic and cadmium are due to the existence of heavy metals pollution to the environment, forcigs materials limited sources and other reasons have been restricting the development of the solar cell to the civilian.ZnO As a new type of semiconductor material, the display in the piezoelectric sensor, and has wide application prospect of light-emitting devices and solar cells, and belongs to the ZnO environmental protection material, and nature reserves, has great potential in solar cell applications. In this paper, ZnO thin film solar cell as the research object, carries on the analysis the first principle theory of ZnO type N and P type doping concentration and related materials, to find suitable for N type solar cell layer, ZnO doping type intermediate layer and the p layer; then through magnetron sputtering method to prepare N and P doped ZnO films, analyzes its working pressure the sputtering power, and the important parameters of substrate temperature and gas atmosphere and the crystal quality of the film surface morphology, effect of conductive properties and optical properties; ZnO homojunction and heterojunction solar system was finally Study on the influence to the battery, the middle layer and the front electrode on the photovoltaic performance of the solar cell. The main work of this paper are as follows: 1. construction of A1 doped ZnO and In doped ZnO model, found that two structures belong to obey Fermi distribution N type degenerate semi conductor, and the concentration of conductive carriers A1 doped ZnO up to 2.81 x 1021cm-3, visible light transmittance theory up to 90%, so Al doped ZnO suitable for solar cell n junction and a transparent conductive electrode. In the ZnO P modified by Al-2N found that the impurity level Co doped structure shallow acceptor Al-2N Co doped ZnO in the structure of self the compensation effect is reduced, the P conversion of ZnO; this is the first study of the rare earth elements doping Eu on the effects of AZO on the absorption of visible light, explore the possibility of Eu doped AZO structure used in the middle layer of the solar cell by 2.; N film, Al doped ZnO were prepared by magnetron sputtering method experiment Al, N Co doped P thin films and Eu, A1 Co doped ZnO thin film solar cell as the middle layer, the combination of the theory and simulation results, the results are as follows: (1) the key process parameters on the preparation of thin film the research found that, when the sputtering power is 120W, the working pressure of crystallization quality and good photoelectric properties of 2.0Pa and substrate temperature is 150 degrees centigrade; in addition, the lattice constant of films, carrier concentration and transmission experimental value change trend and the simulation results are in good agreement; (2) analysis of the mechanism of P type the conversion of ZnO found by donor acceptor co doping can effectively reduce crystal Madelung energy, the preparation of ZnOp film transmittance of atmosphere under a certain concentration of N20 is about 90%; P type ZnO film reached the highest performance in Al, the N ratio is about 1:2, and the simulation results. There is good agreement; (3) to prepare Eu, A1 Co doped ZnO thin film on ITO substrate, that is conductive and good light transmittance, and absorption peaks in the visible region, consistent with the theoretical calculation results; 3. according to the combination of the theoretical and experimental results, this paper designs effect of different intermediate layer and the front electrode structure of ZnO solar photovoltaic performance: (1) were studied with Ti/Ag as the middle layer of the front electrode ZnO homojunctions (P Al, N Co doped ZnO/n type A1 doped ZnO) and heterojunction (P type Si/n type A1 doped ZnO), solar cell structure the results show that the photovoltaic performance of Eu, A1 Co doped ZnO as the middle layer of the solar cell has the highest photoelectric conversion rate, the heterojunction solar cell is 1.467%, homojunction solar cell is 0.426%, consistent with the theoretical prediction; (2) of different metal and AZO/ metal /AZO structure electrode on p-Si/Eu, A 1 Effects of Co doped ZnO/n-AZO heterojunction solar cell photoelectric conversion rate, Cr/Ni metal used as the electrode of solar cell photoelectric conversion rate of 6.68%, AZO/Cr/AZO is used as a front electrode when the solar photoelectric conversion rate as high as 7.11%; above research not only experimental process on the electrical properties of ZnO nano thin film, preparation mechanism, crystal structure. The optical properties were systematically studied, but also the practical application of ZnO type thin film solar cell provides theory foundation and realization.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TM914.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 陳濤;馬明樂(lè);宋春龍;陳堅(jiān);陳東生;;聚光太陽(yáng)能光伏組件的特性研究[J];物理通報(bào);2014年04期
相關(guān)博士學(xué)位論文 前4條
1 趙艷芳;納米ZnO薄膜摻雜改性及其在太陽(yáng)能電池中的應(yīng)用研究[D];江蘇大學(xué);2017年
2 葉逸凡;同步輻射譜學(xué)技術(shù)在能源科學(xué)中的應(yīng)用:聚合物太陽(yáng)能電池和鋰硫電池中的表界面研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2016年
3 王碧霄;納米棒陣列基碳對(duì)電極無(wú)空穴傳輸層的鈣鈦礦太陽(yáng)能電池研究[D];華中師范大學(xué);2017年
4 周丹;自組裝嵌段共軛聚合物電解質(zhì)及超支化小分子陰極界面修飾應(yīng)用于聚合物太陽(yáng)電池[D];南昌大學(xué);2017年
相關(guān)碩士學(xué)位論文 前7條
1 李鵬偉;鈣鈦礦型太陽(yáng)能電池的穩(wěn)定性及大面積制備的研究[D];鄭州大學(xué);2017年
2 劉永強(qiáng);二氧化鈦微球基太陽(yáng)能電池的制備及性能優(yōu)化[D];鄭州大學(xué);2017年
3 王毅樂(lè);高吸收效率太陽(yáng)能電池陷光機(jī)制和光學(xué)特性研究[D];鄭州大學(xué);2017年
4 周林;傒二酰亞胺衍生物的合成和表征[D];上海師范大學(xué);2017年
5 邱曉艷;基于c-HBC的P型半導(dǎo)體材料的合成[D];上海師范大學(xué);2017年
6 馬麗;基于CuI為P型材料的反型鈣鈦礦太陽(yáng)能電池的制備與性能研究[D];鄭州大學(xué);2017年
7 孫貝貝;TiO_2納米纖維介孔層在鈣鈦礦電池中的應(yīng)用[D];鄭州大學(xué);2017年
,本文編號(hào):1553810
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1553810.html