永磁直線電機(jī)伺服系統(tǒng)智能增量滑?刂
本文關(guān)鍵詞: 永磁直線同步電機(jī) 增量滑模控制 智能增量滑?刂 抖振 魯棒性 出處:《沈陽(yáng)工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:直線電機(jī)伺服系統(tǒng)作為衡量制造業(yè)水平的重要標(biāo)志,需要滿足高速度高精度的需求。永磁直線同步電機(jī)(PMLSM)具有高能量密度、高推力-體積比等優(yōu)點(diǎn),廣泛應(yīng)用于半導(dǎo)體生產(chǎn)、水下探測(cè)、機(jī)器人控制、XY平臺(tái)驅(qū)動(dòng)等工業(yè)領(lǐng)域。針對(duì)PMLSM伺服系統(tǒng)易受參數(shù)變化、外部擾動(dòng)、端部效應(yīng)等不確定性因素的影響,提出了增量滑?刂(ISMC)、自適應(yīng)增量滑?刂(AISMC)和智能增量滑?刂(IISMC)來提高系統(tǒng)魯棒性,削弱抖振,進(jìn)而改善系統(tǒng)的跟蹤精度。首先介紹PMLSM的結(jié)構(gòu)和工作原理,建立了PMLSM的數(shù)學(xué)模型;接著對(duì)離散滑?刂(DSMC)方法的原理和設(shè)計(jì)方法進(jìn)行了介紹。為了削弱抖振現(xiàn)象,同時(shí)增強(qiáng)系統(tǒng)的魯棒性,在DSMC基礎(chǔ)上,將系統(tǒng)先前的控制動(dòng)作和狀態(tài)考慮進(jìn)滑模面和控制律的設(shè)計(jì)中,并選用飽和函數(shù)作為切換函數(shù),提出了ISMC方法,設(shè)計(jì)了基于ISMC的PMLSM伺服系統(tǒng)。為了消除切換函數(shù)增益的大小對(duì)抖振和響應(yīng)速度的不利影響,將自適應(yīng)控制和ISMC相結(jié)合,提出AISMC方法,采用自適應(yīng)律實(shí)時(shí)調(diào)整切換函數(shù)的增益,設(shè)計(jì)了基于AISMC的PMLSM伺服系統(tǒng)。為了進(jìn)一步抑制不確定因素對(duì)系統(tǒng)的干擾,提高系統(tǒng)的跟蹤精度,設(shè)計(jì)了基于IISMC的PMLSM伺服系統(tǒng)。采用小波神經(jīng)網(wǎng)絡(luò)(WNN)對(duì)不確定因素進(jìn)行實(shí)時(shí)觀測(cè),對(duì)控制律進(jìn)行補(bǔ)償。考慮粒子的最差位置,設(shè)計(jì)了改進(jìn)的粒子群算法(IPSO)對(duì)WNN的學(xué)習(xí)率進(jìn)行實(shí)時(shí)調(diào)整,增強(qiáng)WNN的學(xué)習(xí)能力。最后針對(duì)所提出的ISMC、AISMC、IISMC方法,建立基于這些方法的PMLSM伺服系統(tǒng)仿真模型,通過仿真結(jié)果分析,驗(yàn)證了所提出的方法可以有效削弱抖振,增強(qiáng)系統(tǒng)的魯棒性,提高系統(tǒng)的控制精度,對(duì)比表明IISMC方法具有最好的控制性能。
[Abstract]:As an important symbol to measure the level of manufacturing industry, linear motor servo system needs to meet the demand of high speed and high precision. PMLSM (permanent Magnet Linear synchronous Motor) has high energy density. The advantages of high thrust-volume ratio are widely used in semiconductor production underwater detection robot control XY platform drive and other industrial fields. The PMLSM servo system is vulnerable to parameter changes and external disturbances. An incremental sliding mode control (ISMCC) is proposed for the effect of the end effect and other uncertain factors. Adaptive incremental sliding mode control (AISMC) and intelligent incremental sliding mode control (IISMCC) are used to improve system robustness and weaken buffeting. Then the tracking accuracy of the system is improved. Firstly, the structure and working principle of PMLSM are introduced, and the mathematical model of PMLSM is established. Then the principle and design method of discrete sliding mode control (DSMC) method are introduced. In order to weaken the chattering phenomenon and enhance the robustness of the system, the system is based on DSMC. The previous control actions and states of the system are considered in the design of sliding mode surface and control law, and the saturation function is selected as the switching function, and the ISMC method is proposed. A PMLSM servo system based on ISMC is designed. In order to eliminate the adverse effect of the gain of switching function on buffeting and response speed, adaptive control is combined with ISMC. The AISMC method is proposed to adjust the gain of switching function in real time by using adaptive law, and a PMLSM servo system based on AISMC is designed. In order to further suppress the disturbance of uncertain factors to the system. To improve the tracking accuracy of the system, a PMLSM servo system based on IISMC is designed. The wavelet neural network (WNN) is used to observe the uncertain factors in real time. Considering the worst position of particle, an improved particle swarm optimization algorithm (PSO) is designed to adjust the learning rate of WNN in real time. Finally, the simulation model of PMLSM servo system based on these methods is established, and the simulation results are analyzed. It is verified that the proposed method can effectively weaken buffeting, enhance the robustness of the system and improve the control accuracy of the system. The comparison shows that the IISMC method has the best control performance.
【學(xué)位授予單位】:沈陽(yáng)工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM359.4;TM921.541
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 邱磊磊;陸華才;孫駟洲;繆碧云;;永磁直線電機(jī)的端部效應(yīng)和齒槽效應(yīng)分析[J];安徽工程大學(xué)學(xué)報(bào);2015年05期
2 黃磊;胡敏強(qiáng);余海濤;施智祥;仲偉波;;直驅(qū)式波浪發(fā)電用全超導(dǎo)初級(jí)勵(lì)磁直線發(fā)電機(jī)的設(shè)計(jì)與分析[J];電工技術(shù)學(xué)報(bào);2015年02期
3 楊俊友;馬航;關(guān)麗榮;楊松;;永磁直線電機(jī)二維分段復(fù)合迭代學(xué)習(xí)控制[J];中國(guó)電機(jī)工程學(xué)報(bào);2010年30期
4 劉金琨;孫富春;;滑模變結(jié)構(gòu)控制理論及其算法研究與進(jìn)展[J];控制理論與應(yīng)用;2007年03期
5 陸華才;徐月同;楊偉民;陳子辰;;永磁直線同步電機(jī)進(jìn)給系統(tǒng)模糊PID控制[J];電工技術(shù)學(xué)報(bào);2007年04期
6 藍(lán)益鵬;王雷;;數(shù)控機(jī)床直線伺服系統(tǒng)IP控制器設(shè)計(jì)的新方法[J];機(jī)床與液壓;2007年01期
7 張希;陳宗祥;潘俊民;王杰;;永磁直線同步電機(jī)的固定邊界層滑?刂芠J];中國(guó)電機(jī)工程學(xué)報(bào);2006年22期
8 郭慶鼎,藍(lán)益鵬;永磁直線伺服電機(jī)L_2魯棒控制的研究[J];中國(guó)電機(jī)工程學(xué)報(bào);2005年18期
9 陳淵睿,吳捷,Norbert C.Cheung;永磁直線電機(jī)的模型參考自適應(yīng)控制[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年06期
10 張益波,張井崗,陳志梅;離散時(shí)間系統(tǒng)變結(jié)構(gòu)控制研究綜述[J];信息與控制;2003年02期
,本文編號(hào):1473790
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1473790.html