智能電網(wǎng)多目標(biāo)動(dòng)態(tài)經(jīng)濟(jì)優(yōu)化調(diào)度方法研究
本文關(guān)鍵詞: 經(jīng)濟(jì)調(diào)度 多目標(biāo) 風(fēng)電場(chǎng) 電動(dòng)汽車 差分進(jìn)化算法 Pareto最優(yōu)解 出處:《華北電力大學(xué)(北京)》2016年碩士論文 論文類型:學(xué)位論文
【摘要】:經(jīng)濟(jì)調(diào)度是指在滿足一定的約束條件的基礎(chǔ)上,通過(guò)調(diào)度機(jī)組出力滿足模型目標(biāo)函數(shù)的基本問(wèn)題,它在本質(zhì)上是一種最優(yōu)化問(wèn)題。隨著電動(dòng)汽車和可再生能源的發(fā)展,傳統(tǒng)經(jīng)濟(jì)調(diào)度模型不再局限于傳統(tǒng)火電機(jī)組,經(jīng)濟(jì)調(diào)度問(wèn)題有了新的發(fā)展;同時(shí),基于對(duì)可再生能源和電動(dòng)汽車等多種因素的考慮,原先的單目標(biāo)函數(shù)已經(jīng)不能滿足要求,因此,研究智能電網(wǎng)背景下的多目標(biāo)動(dòng)態(tài)經(jīng)濟(jì)調(diào)度模型具有重要意義。針對(duì)智能電網(wǎng)背景下的多目標(biāo)動(dòng)態(tài)經(jīng)濟(jì)調(diào)度問(wèn)題,分析了新能源和電動(dòng)汽車并網(wǎng)對(duì)傳統(tǒng)經(jīng)濟(jì)調(diào)度問(wèn)題帶來(lái)的影響;提出了一種改進(jìn)的差分進(jìn)化算法,并利用該算法對(duì)含風(fēng)電場(chǎng)動(dòng)態(tài)經(jīng)濟(jì)調(diào)度模型求解;融入混沌和量子的思想提出了一種混合優(yōu)化算法,并利用該算法對(duì)含風(fēng)電場(chǎng)和電動(dòng)汽車的多目標(biāo)動(dòng)態(tài)經(jīng)濟(jì)調(diào)度進(jìn)行求解。具體工作如下:1.在差分進(jìn)化算法的基礎(chǔ)上結(jié)合人工蜂群算法(ABC)的觀察蜂加速進(jìn)化操作、偵查蜂隨機(jī)搜索操作提出了一種改進(jìn)差分進(jìn)化算法(IDE);并在此基礎(chǔ)上,引入量子思想和混沌思想,提出了一種混合改進(jìn)量子差分進(jìn)化算法(HIQDE),最終實(shí)現(xiàn)了降低種群規(guī)模、防止早熟收斂、提高局部和全局搜索能力的目的。2.提出了基于IDE算法的含風(fēng)電場(chǎng)的動(dòng)態(tài)經(jīng)濟(jì)調(diào)度模型。利用本文提出的IDE算法,以IEEE-30節(jié)點(diǎn)系統(tǒng)為例,對(duì)模型進(jìn)行MATLAB仿真,并將IDE算法實(shí)驗(yàn)結(jié)果與其他ABC、DE、PSO算法進(jìn)行對(duì)比。通過(guò)對(duì)目標(biāo)函數(shù)值(費(fèi)用)和功損的比較,驗(yàn)證了本文提出的改進(jìn)算法的有效性。3.提出了基于HIQDE算法的含電動(dòng)汽車和風(fēng)電場(chǎng)經(jīng)濟(jì)調(diào)度的多目標(biāo)動(dòng)態(tài)經(jīng)濟(jì)調(diào)度模型。以IEEE-39節(jié)點(diǎn)系統(tǒng)為例,利用前文提出的基于Pareto最優(yōu)的混合改進(jìn)量子差分進(jìn)化算法,對(duì)模型進(jìn)行MATLAB仿真實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)果表明本文提出的研究方案能很好的解決含新能源和電動(dòng)汽車的經(jīng)濟(jì)調(diào)度問(wèn)題。
[Abstract]:Economic dispatch refers to the basic problem of satisfying the objective function of the model by dispatching the generating units on the basis of satisfying certain constraint conditions. It is an optimization problem in essence. With the development of electric vehicles and renewable energy, the traditional economic scheduling model is no longer confined to traditional thermal power units, and the economic scheduling problem has a new development. At the same time, based on the consideration of renewable energy and electric vehicles, the original single-objective function can not meet the requirements. It is of great significance to study the multi-objective dynamic economic dispatching model in the context of smart grid, aiming at the multi-objective dynamic economic dispatching problem in the context of smart grid. The influence of new energy and electric vehicle grid connection on the traditional economic scheduling problem is analyzed. An improved differential evolutionary algorithm is proposed and used to solve the dynamic economic scheduling model of wind farm. In this paper, a hybrid optimization algorithm is proposed, which is based on the theory of chaos and quantum. The algorithm is used to solve the multi-objective dynamic economic scheduling with wind farm and electric vehicle. The main work is as follows: 1. Based on the differential evolutionary algorithm (DEA), the artificial bee colony algorithm (ABC) is used to solve the problem. To watch bees accelerate evolution. In this paper, an improved differential evolutionary algorithm (IDEN) is proposed for random search. On the basis of this, a hybrid improved quantum differential evolution algorithm (HIQDEA) is proposed by introducing quantum thought and chaos theory, which can reduce the population size and prevent premature convergence. The purpose of improving the local and global search ability. 2. A dynamic economic scheduling model with wind farm based on IDE algorithm is proposed. Using the IDE algorithm proposed in this paper, the IEEE-30 node system is taken as an example. The model is simulated by MATLAB, and the experimental results of the IDE algorithm are compared with those of other ABCs de PSO algorithms. The value of the objective function (cost) and the power loss are compared. The effectiveness of the improved algorithm proposed in this paper is verified. 3. A multi-objective dynamic economic scheduling model including electric vehicle and wind farm economic scheduling based on HIQDE algorithm is proposed. The IEEE-39 node system is used as the node system. For example. The hybrid improved quantum differential evolution algorithm based on Pareto is proposed in this paper. The model is simulated by MATLAB. The experimental results show that the proposed scheme can solve the economic scheduling problem with new energy sources and electric vehicles.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TM73;TP18
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐雙燕;丁祥海;陶俐言;;多目標(biāo)動(dòng)態(tài)車間設(shè)施布局研究綜述[J];機(jī)械研究與應(yīng)用;2012年06期
2 陶華學(xué);;同時(shí)顧及多個(gè)質(zhì)量準(zhǔn)則的變形監(jiān)測(cè)多目標(biāo)動(dòng)態(tài)優(yōu)化設(shè)計(jì)[J];工程勘察;1990年04期
3 張紅霞,唐煥文,林建華;多目標(biāo)動(dòng)態(tài)投入產(chǎn)出優(yōu)化模型應(yīng)用研究[J];大連理工大學(xué)學(xué)報(bào);2001年05期
4 李向東;魏惠之;張運(yùn)法;;彈丸-目標(biāo)動(dòng)態(tài)交匯分析[J];彈道學(xué)報(bào);1996年02期
5 鄒振儒;張利;王會(huì)水;朱峰;吳修民;;雪野水庫(kù)多目標(biāo)動(dòng)態(tài)供水模型[J];人民黃河;2007年12期
6 喬占周;;多目標(biāo)動(dòng)態(tài)加權(quán)差分算法及在電力經(jīng)濟(jì)調(diào)度模型上的應(yīng)用[J];聊城大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年03期
7 尚澤軍;李軍;周鵬;丁光正;許艷麗;;雪野水庫(kù)多目標(biāo)動(dòng)態(tài)供水模型[J];水電能源科學(xué);2007年04期
8 劉芹;段樂(lè)毅;亓洪昌;劉強(qiáng);魏永強(qiáng);;雪野水庫(kù)多目標(biāo)動(dòng)態(tài)供水模型[J];節(jié)水灌溉;2008年02期
9 趙華;劉俊梅;;雙目標(biāo)動(dòng)態(tài)遷移操作DE-PSO混合算法[J];寧夏工程技術(shù);2013年04期
10 蔡昆;;引信目標(biāo)動(dòng)態(tài)多卜勒特征信號(hào)的三維頻譜分析[J];制導(dǎo)與引信;1990年03期
相關(guān)會(huì)議論文 前1條
1 張新勇;;目標(biāo)動(dòng)態(tài)擴(kuò)大方法對(duì)視線輸入交互的影響研究[A];第六屆和諧人機(jī)環(huán)境聯(lián)合學(xué)術(shù)會(huì)議(HHME2010)、第19屆全國(guó)多媒體學(xué)術(shù)會(huì)議(NCMT2010)、第6屆全國(guó)人機(jī)交互學(xué)術(shù)會(huì)議(CHCI2010)、第5屆全國(guó)普適計(jì)算學(xué)術(shù)會(huì)議(PCC2010)論文集[C];2010年
相關(guān)碩士學(xué)位論文 前2條
1 馬蓉;智能電網(wǎng)多目標(biāo)動(dòng)態(tài)經(jīng)濟(jì)優(yōu)化調(diào)度方法研究[D];華北電力大學(xué)(北京);2016年
2 戴崇;雷達(dá)目標(biāo)動(dòng)態(tài)RCS特性建模方法研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2013年
,本文編號(hào):1472888
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1472888.html