低功耗節(jié)點(diǎn)射頻供能方法研究與設(shè)計(jì)
發(fā)布時(shí)間:2018-01-26 06:55
本文關(guān)鍵詞: 功耗 自適應(yīng) 射頻能量收集 整流器 能量轉(zhuǎn)換效率 出處:《北方工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:近年來(lái),隨著射頻能量收集技術(shù)和無(wú)線射頻的信號(hào)頻率范圍的來(lái)源越來(lái)越廣,使得低功耗的無(wú)線網(wǎng)絡(luò)節(jié)點(diǎn)的自供電,即利用射頻能量收集進(jìn)行自供電成為可能。這一技術(shù)的應(yīng)用使得依靠電池,以及由于微能量限制,特殊的自然環(huán)境下不易更換電池的低功耗無(wú)線傳感節(jié)點(diǎn)的使用得到了較大的改善。本文提出了射頻信號(hào)的收集系統(tǒng)為低功耗的節(jié)點(diǎn)供能,而且分析了射頻能量信號(hào)收集系統(tǒng)的各個(gè)模塊,同時(shí)對(duì)于與不同的方案進(jìn)行對(duì)比分析,將最佳方案整合為射頻能量信號(hào)收集的設(shè)計(jì)系統(tǒng)。首先,文章對(duì)射頻信號(hào)收集系統(tǒng)的整體電路結(jié)構(gòu)的基本原理進(jìn)行了分析,并對(duì)現(xiàn)有的微能量收集如太陽(yáng)能,壓電能量,射頻能量等進(jìn)行了比照,并且分析其不同的優(yōu)缺點(diǎn)。再次,剖析了射頻信號(hào)獲取系統(tǒng)的匹配電路,整流倍壓電路,基準(zhǔn)穩(wěn)壓電路等組成部分的電路結(jié)構(gòu)和基本原理。最后,針對(duì)物聯(lián)網(wǎng)末端的低功耗節(jié)點(diǎn),在已有的電路基礎(chǔ)上進(jìn)行電路改造創(chuàng)新,并在ADS中進(jìn)行仿真分析。其中本文的射頻信號(hào)收集系統(tǒng)核心部分提出一種自適應(yīng)的射頻能量信號(hào)的轉(zhuǎn)換電路。利用輔助晶體管動(dòng)態(tài)地控制整流器鏈的閾值電壓,設(shè)計(jì)的電路降低了晶體管正向偏置的閾值電壓,增加了收獲的功率和輸出電壓,同時(shí)增加了反向偏置的閾值電壓,以減少漏電流,防止電容存儲(chǔ)能量的損耗,提高了整流倍壓電路的轉(zhuǎn)換效率。本文設(shè)計(jì)的射頻能量信號(hào)轉(zhuǎn)換系統(tǒng)中包含T型匹配電路,自適應(yīng)的倍壓整流電路的級(jí)數(shù)為12級(jí),超低功耗基準(zhǔn)穩(wěn)壓電路。并將其在ADS中對(duì)于射頻能量收集系統(tǒng)進(jìn)行了模塊仿真分析和總體的仿真分析,最終得出整流倍壓電路的轉(zhuǎn)換效率在-14dBm時(shí)達(dá)到35.3%,同時(shí),在能量轉(zhuǎn)換時(shí)間經(jīng)過(guò)100ms以后,輸出負(fù)載為1MΩ的輸出電壓大約為3.2V,達(dá)到了低功耗節(jié)點(diǎn)的電壓工作范圍。
[Abstract]:In recent years, with the increasing sources of RF energy collection technology and RF signal frequency range, low power consumption wireless network nodes self-supply. It is possible to use RF energy collection for self-supply. The application of this technology makes it possible to rely on batteries, and because of the limitation of micro-energy. The use of low power wireless sensor nodes, which are not easy to replace batteries, has been greatly improved in the special environment. In this paper, a radio frequency signal collection system is proposed to provide energy for low power consumption nodes. And analyzed each module of RF energy signal collection system, at the same time, compared with different schemes, integrated the best scheme into the design system of RF energy signal collection. First of all. This paper analyzes the basic principle of the whole circuit structure of the RF signal collection system, and compares the existing micro-energy collection such as solar energy, piezoelectric energy, RF energy and so on. And analyzed its different advantages and disadvantages. Thirdly, analyzed the RF signal acquisition system matching circuit, rectifier voltage doubling circuit, reference voltage regulator circuit and other components of the circuit structure and basic principles. Aiming at the low-power nodes at the end of the Internet of things, the circuit innovation is carried out on the basis of the existing circuits. The core part of the RF signal collection system in this paper presents an adaptive conversion circuit of RF energy signal. The auxiliary transistor is used to dynamically control the threshold electricity of rectifier chain. Press. The designed circuit reduces the threshold voltage of forward bias, increases the gain power and output voltage, and increases the threshold voltage of reverse bias to reduce leakage current and prevent the loss of capacitor storage energy. The conversion efficiency of rectifier voltage doubling circuit is improved. The RF energy signal conversion system designed in this paper includes T matching circuit, and the series of adaptive voltage doubling rectifier circuit is 12. The ultra-low power reference voltage stabilizer circuit is used in ADS. The module simulation analysis and the overall simulation analysis for the RF energy collection system are carried out. Finally, the conversion efficiency of the rectifier voltage doubling circuit reaches 35.3um at -14dBm, and after 100ms after the energy conversion time. The output voltage with output load of 1m 惟 is about 3.2 V, which reaches the voltage range of low power consumption node.
【學(xué)位授予單位】:北方工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.44;TM619
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 宋凱;朱春波;李陽(yáng);李曉宇;趙鑫;;基于磁耦合諧振的自主無(wú)線充電機(jī)器人系統(tǒng)設(shè)計(jì)[J];電工技術(shù)學(xué)報(bào);2014年09期
相關(guān)博士學(xué)位論文 前1條
1 吳寅;采用環(huán)境能量的自供電無(wú)線傳感器網(wǎng)絡(luò)關(guān)鍵技術(shù)研究[D];南京航空航天大學(xué);2013年
相關(guān)碩士學(xué)位論文 前1條
1 楊陽(yáng);適用于無(wú)線體域網(wǎng)的微能量采集電路設(shè)計(jì)[D];華中科技大學(xué);2013年
,本文編號(hào):1464993
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1464993.html
最近更新
教材專著