基于光纖F-P腔的超聲波信號(hào)檢測(cè)與分析
本文關(guān)鍵詞:基于光纖F-P腔的超聲波信號(hào)檢測(cè)與分析 出處:《昆明理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 法布里-珀羅腔 光纖F-P腔超聲波傳感器 信號(hào)解調(diào)系統(tǒng) ANSYS仿真 靈敏度 固有頻率
【摘要】:電力變壓器的局部放電往往會(huì)對(duì)電力變電站的運(yùn)行設(shè)備帶來極大的破壞,造成不可挽回的經(jīng)濟(jì)損失。局部放電會(huì)產(chǎn)生超聲波等一系列物理現(xiàn)象,可以通過檢測(cè)超聲波信號(hào)來判斷變壓器是否有局部放電的情況,一旦變壓器出現(xiàn)故障能及時(shí)搶修。受限于變壓器周圍強(qiáng)電磁場(chǎng)、易腐蝕等原因,傳統(tǒng)的壓電式超聲波傳感器不能在變壓器檢測(cè)中使用。光纖F-P腔超聲波傳感器以其抗電磁干擾、耐腐蝕、精確度高、質(zhì)地輕、可撓曲等優(yōu)點(diǎn),能很好的運(yùn)用于變壓器檢測(cè)系統(tǒng)中。本文根據(jù)法布里-珀羅腔光線干涉原理,制備了光纖F-P腔超聲波傳感器,利用其傳感特性搭建了光纖超聲波傳感器解調(diào)系統(tǒng),利用采集到的超聲波信號(hào)進(jìn)行解調(diào)分析,對(duì)提高光纖F-P腔超聲波傳感器的靈敏度展開了深入研究。主要研究?jī)?nèi)容如下:(1)根據(jù)F-P腔的多光束干涉理論以及傳感原理,設(shè)計(jì)了一種光纖F-P腔超聲波傳感器,分析了強(qiáng)度型解調(diào)與相位型解調(diào)的基本原理。分析了石英膜片的結(jié)構(gòu)參數(shù)對(duì)靈敏度與諧振頻率的影響,通過ANSYS仿真軟件Workbench平臺(tái)對(duì)不同結(jié)構(gòu)參數(shù)的膜片進(jìn)行仿真對(duì)比,優(yōu)化了超聲波傳感器石英膜片的有效半徑和厚度參數(shù),制備了 3只光纖F-P腔超聲波傳感器。(2)根據(jù)對(duì)高速超聲波信號(hào)的檢測(cè)原理,研制了光纖F-P腔超聲波傳感器解調(diào)系統(tǒng)。對(duì)該系統(tǒng)硬件電路進(jìn)行了詳細(xì)的設(shè)計(jì),對(duì)DFB窄帶激光二極管、低噪聲光電二極管和光纖耦合器等光學(xué)元器件的選型,以及對(duì)這些光學(xué)器件接口和法蘭盤的分析。通過對(duì)放大器芯片、電源芯片和AD采集芯片的選型,研制了放大電路、電源轉(zhuǎn)換模塊和A/D數(shù)據(jù)采集模塊,搭建了光纖F-P腔超聲波傳感器解調(diào)系統(tǒng)。研發(fā)了系統(tǒng)上位機(jī)軟件,上位機(jī)通過USB 口與解調(diào)儀采集模塊通訊,具有實(shí)時(shí)采集數(shù)據(jù)、存儲(chǔ)數(shù)據(jù)庫(kù),數(shù)據(jù)不同顯示方式,參數(shù)配置和性能分析等功能,通過測(cè)試,上位機(jī)采集功能、數(shù)據(jù)存儲(chǔ)功能、顯示功能等正常。(3)利用電子脈沖放電產(chǎn)生超聲波信號(hào),通過光纖F-P腔超聲波傳感器和壓電陶瓷傳感器對(duì)信號(hào)進(jìn)行采集檢測(cè),通過采集的兩種傳感器在同種局放源下的輸出電壓幅值,研究了傳感器輸出電壓幅值與超聲波聲壓的關(guān)系。通過3只光纖F-P腔超聲波傳感器橫向?qū)Ρ葘?shí)驗(yàn)研究了傳感器的結(jié)構(gòu)參數(shù)和固有頻率對(duì)靈敏度的影響;研究了光纖F-P腔超聲波傳感器在不同介質(zhì)中的阻尼對(duì)靈敏度的影響;對(duì)比了光纖傳感器和壓電式傳感器的測(cè)試性能。
[Abstract]:Partial discharge of power transformer often brings great damage to the operation equipment of power substation, causing irreparable economic loss. Partial discharge will produce a series of physical phenomena such as ultrasonic wave. Ultrasonic signals can be detected to determine whether the transformer has partial discharge, once the transformer fault can be repaired in time, limited by the strong electromagnetic field around the transformer, easy to corrosion and other reasons. Traditional piezoelectric ultrasonic sensor can not be used in transformer detection. Fiber F-P cavity ultrasonic sensor has the advantages of anti-electromagnetic interference, corrosion resistance, high accuracy, light texture, flexible and so on. According to the principle of Fabry-Perot cavity light interference, the fiber F-P cavity ultrasonic sensor is fabricated. The demodulation system of fiber optic ultrasonic sensor is built by using its sensing characteristics, and the demodulation analysis is carried out by using the collected ultrasonic signal. In this paper, the sensitivity of fiber F-P cavity ultrasonic sensor is studied. The main contents are as follows: 1) according to the multi-beam interference theory and sensing principle of F-P cavity. A fiber F-P cavity ultrasonic sensor is designed. The basic principles of intensity demodulation and phase demodulation are analyzed. The influence of the structure parameters of quartz diaphragm on the sensitivity and resonant frequency is analyzed. The effective radius and thickness parameters of quartz diaphragm of ultrasonic sensor are optimized by comparing the different structure parameters of diaphragm with ANSYS simulation software Workbench platform. Three fiber F-P cavity ultrasonic sensors were fabricated. The demodulation system of fiber F-P cavity ultrasonic sensor is developed. The hardware circuit of the system is designed in detail, and the DFB narrow band laser diode is designed. The selection of optical components such as low noise photodiode and optical fiber coupler, as well as the analysis of the interface of these optical devices and flange. Through the amplifier chip, power chip and AD acquisition chip selection. The amplifier circuit, power conversion module and A / D data acquisition module are developed, the demodulation system of fiber F-P cavity ultrasonic sensor is built, and the software of upper computer is developed. The host computer communicates with the demodulator acquisition module through the USB port. It has the functions of real-time data acquisition, storage database, different display modes of data, parameter configuration and performance analysis, etc. Upper computer acquisition function, data storage function, display function, etc.) using electronic pulse discharge to generate ultrasonic signal. The signal is collected and detected by fiber F-P cavity ultrasonic sensor and piezoelectric ceramic sensor, and the output voltage amplitude of the two sensors under the same PD source is obtained. The relationship between the output voltage amplitude of the sensor and the ultrasonic sound pressure is studied. The effects of the structural parameters and natural frequency of the sensor on the sensitivity are studied by the transverse contrast experiments of three fiber F-P cavity ultrasonic sensors. The influence of the damping of fiber F-P cavity ultrasonic sensor in different media on the sensitivity is studied. The performance of optical fiber sensor and piezoelectric sensor is compared.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP212;TM41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 聶德鑫;陳連凱;姜國(guó)義;劉海波;皮本熙;張偉超;劉杰;張灤;;非本征F-P局部放電光纖傳感器設(shè)計(jì)及靈敏度分析[J];應(yīng)用光學(xué);2016年06期
2 王翥;崔曉志;侯春雷;;超聲波傳感器接收信號(hào)強(qiáng)度非對(duì)稱性分析及對(duì)策[J];傳感技術(shù)學(xué)報(bào);2015年01期
3 蔡卓凡;;基于多超聲波傳感器避障機(jī)器人小車的設(shè)計(jì)[J];自動(dòng)化技術(shù)與應(yīng)用;2014年05期
4 鄒偉;李麗;王秀;翟長(zhǎng)遠(yuǎn);張睿;;超聲波傳感器測(cè)距實(shí)驗(yàn)平臺(tái)設(shè)計(jì)與實(shí)驗(yàn)[J];傳感器與微系統(tǒng);2011年10期
5 李敏;趙洪;徐明忠;;FP型傳感器局放聲測(cè)系統(tǒng)的仿真研究[J];高電壓技術(shù);2008年05期
6 林良有;張偉;;基于FPGA的連續(xù)采樣的高速PCI采集卡設(shè)計(jì)[J];計(jì)算機(jī)測(cè)量與控制;2007年06期
7 倪小琦;陳緒興;王鳴;;用陣列波導(dǎo)光柵實(shí)現(xiàn)光纖傳感器的復(fù)用[J];南京師范大學(xué)學(xué)報(bào)(工程技術(shù)版);2006年04期
8 柳洪義;羅忠;;非結(jié)構(gòu)環(huán)境下超聲波傳感器探測(cè)原理及其誤差分析[J];東北大學(xué)學(xué)報(bào);2006年08期
9 王萬章;洪添勝;陸永超;岳學(xué)軍;張智剛;蔣國(guó)良;;基于超聲波傳感器和DGPS的果樹冠徑檢測(cè)[J];農(nóng)業(yè)工程學(xué)報(bào);2006年08期
10 張海濤;;基于多超聲波傳感器的避障系統(tǒng)設(shè)計(jì)[J];山西科技;2006年01期
相關(guān)碩士學(xué)位論文 前10條
1 全明冉;基于光纖干涉技術(shù)的光纖激光器及傳感器的研究[D];哈爾濱工業(yè)大學(xué);2016年
2 韓晶;適用于橋梁振動(dòng)監(jiān)測(cè)的光纖加速度傳感器研究[D];石家莊鐵道大學(xué);2015年
3 朱英昊;光纖Fabry-Perot腔結(jié)構(gòu)的表面張力傳感與測(cè)量研究[D];中國(guó)計(jì)量學(xué)院;2015年
4 張宇;基于DDS和FPGA的數(shù)字式可變脈沖激勵(lì)超聲檢測(cè)系統(tǒng)研究[D];西南交通大學(xué);2015年
5 先甫克特·阿布來提;通用電源模塊測(cè)試平臺(tái)上位機(jī)系統(tǒng)設(shè)計(jì)[D];山東大學(xué);2015年
6 宋美晶;光纖布拉格光柵F-P腔全光時(shí)間積分器的設(shè)計(jì)[D];吉林大學(xué);2015年
7 汪偉;基于可變閾值過零檢測(cè)的氣體超聲波流量計(jì)信號(hào)處理方法與實(shí)現(xiàn)[D];合肥工業(yè)大學(xué);2015年
8 沈翔;基于紫外光刻寫的微納光纖光柵FP腔特性研究[D];暨南大學(xué);2014年
9 魯曄;基于超聲波的電力設(shè)備局部放電在線監(jiān)測(cè)系統(tǒng)設(shè)計(jì)[D];蘭州理工大學(xué);2014年
10 張昭;基于光纖微腔的光纖傳感器研究[D];安徽大學(xué);2014年
,本文編號(hào):1419272
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1419272.html