通電條件下架空導(dǎo)線線股應(yīng)力及微風(fēng)振動(dòng)疲勞壽命研究
本文關(guān)鍵詞:通電條件下架空導(dǎo)線線股應(yīng)力及微風(fēng)振動(dòng)疲勞壽命研究 出處:《鄭州大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 輸電導(dǎo)線 溫度 微風(fēng)振動(dòng) 分層應(yīng)力 疲勞壽命
【摘要】:運(yùn)行狀態(tài)下的架空輸電導(dǎo)線是帶電工作的,長(zhǎng)期承受張力、微風(fēng)振動(dòng)和溫度場(chǎng)的聯(lián)合作用。由于張力的存在,導(dǎo)線的微風(fēng)振動(dòng)疲勞屬于非對(duì)稱循環(huán)交變應(yīng)力下的疲勞問(wèn)題,還需要考慮平均應(yīng)力對(duì)疲勞壽命的影響。因?yàn)閷?dǎo)線鋼芯和鋁股線脹系數(shù)的不同,各股層的應(yīng)力和溫度之間的關(guān)系不盡相同,所以準(zhǔn)確分析導(dǎo)線在運(yùn)行溫度場(chǎng)中的應(yīng)力分布對(duì)精確計(jì)算輸電導(dǎo)線微風(fēng)振動(dòng)疲勞壽命很有必要。然而現(xiàn)有文獻(xiàn)很少涉及導(dǎo)線溫度對(duì)線股分層應(yīng)力及微風(fēng)振動(dòng)特性影響的研究,針對(duì)這一問(wèn)題,本文主要做了以下幾方面的工作:首先基于鋼芯鋁絞線的結(jié)構(gòu)分層特性,利用導(dǎo)線各股層的變形協(xié)調(diào)條件建立導(dǎo)線的力學(xué)平衡方程求解導(dǎo)線在張力和溫度作用下各股層的應(yīng)力,利用ANSYS建立導(dǎo)線的精細(xì)模型,加載后與理論計(jì)算值對(duì)比,驗(yàn)證理論的正確性,然后分析整體溫度和徑向溫度對(duì)外層鋁股張力的影響;然后分析了導(dǎo)線懸掛點(diǎn)處最外層鋁股因?qū)Ь溫度的變化而引起的應(yīng)力變化。其次,介紹了導(dǎo)線微風(fēng)振動(dòng)的機(jī)理,通過(guò)研究導(dǎo)線振動(dòng)時(shí)微風(fēng)輸入功率、導(dǎo)線自阻尼功率,運(yùn)用能量平衡法對(duì)輸電導(dǎo)線振動(dòng)強(qiáng)度進(jìn)行了評(píng)估,然后分析了導(dǎo)線張力、地形和檔距對(duì)微風(fēng)振動(dòng)振幅的影響,著重分析了溫度、風(fēng)速共同作用對(duì)導(dǎo)線振動(dòng)的影響。最后,系統(tǒng)地介紹了導(dǎo)線壽命預(yù)測(cè)的詳細(xì)過(guò)程,著重分析了導(dǎo)線風(fēng)向、風(fēng)速概率分布,通過(guò)微風(fēng)振動(dòng)的動(dòng)彎應(yīng)力和導(dǎo)線線股的平均應(yīng)力,求解輸電線的等效交變應(yīng)力幅值;基于風(fēng)速、風(fēng)向的聯(lián)合概率,得到年平均微風(fēng)振動(dòng)時(shí)間;通過(guò)Miner線性累計(jì)損傷原理和輸電線的S-N曲線,評(píng)估輸電導(dǎo)線的疲勞壽命。研究了輸電線張力、地形、懸掛點(diǎn)高度,尤其是溫度對(duì)輸電導(dǎo)線疲勞壽命的影響程度。
[Abstract]:The overhead transmission lines in operation are live working and bear the combined action of tension wind vibration and temperature field for a long time due to the existence of tension. The wind vibration fatigue of conductors belongs to the fatigue problem under asymmetric cyclic alternating stress, and the influence of average stress on fatigue life should be considered, because of the difference of linear expansion coefficient between conductor steel core and aluminum strand. The relationship between stress and temperature of each layer is different. Therefore, it is necessary to accurately analyze the stress distribution of conductors in the operating temperature field in order to accurately calculate the fatigue life of transmission conductors in wind vibration. However, the existing literature rarely deals with the delamination stress of wire strands and the characteristics of wind vibration. Impact studies. To solve this problem, this paper mainly does the following work: firstly, based on the structural delamination characteristics of steel core aluminum strands. The stress of each layer under tension and temperature is solved by establishing the equilibrium equation of wire mechanics by using the deformation coordination condition of each layer of wire, and the fine model of conductor is established by using ANSYS. After loading, the validity of the theory is verified by comparing the calculated values with the theoretical values, and then the influence of the whole temperature and radial temperature on the tension of the outer aluminum strand is analyzed. Then the stress change of the outermost aluminum wire at the wire suspension point is analyzed. Secondly, the mechanism of the conductor breeze vibration is introduced, and the wind input power is studied when the conductor vibrates. The vibration intensity of transmission wire is evaluated by the energy balance method, and the influence of wire tension, topography and distance on the vibration amplitude of wind is analyzed, with emphasis on the temperature. Finally, the detailed process of traverse life prediction is systematically introduced, with emphasis on the analysis of wind direction and wind speed probability distribution. The equivalent alternating stress amplitude of the transmission line is solved by the dynamic bending stress of the breeze vibration and the average stress of the wire strands. Based on the combined probability of wind speed and wind direction, the average annual wind vibration time is obtained. The fatigue life of transmission line is evaluated by Miner linear cumulative damage principle and S-N curve of transmission line. The transmission line tension, topography and height of suspension point are studied. Especially the influence of temperature on the fatigue life of transmission lines.
【學(xué)位授予單位】:鄭州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM75
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃欲成;陳池;汪峰;趙全江;柏曉路;文曉旭;;大跨越架空輸電導(dǎo)線鋼芯鋁股應(yīng)力分布特性研究[J];三峽大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年04期
2 肖凱;劉永斗;李鵬云;古泉;陳志為;;架空導(dǎo)線溫度應(yīng)力場(chǎng)耦合數(shù)值分析[J];廣東電力;2015年11期
3 林建華;曾偉;;架空導(dǎo)線用鋼芯鋁絞線張力分層特性研究[J];電線電纜;2015年04期
4 肖凱;劉永斗;李鵬云;陳志為;;架空導(dǎo)線徑向溫度場(chǎng)的數(shù)值模擬[J];武漢理工大學(xué)學(xué)報(bào);2015年04期
5 何整杰;李震彪;梁盼望;;輸電線溫度及載流量的ANSYS計(jì)算方法[J];浙江電力;2010年08期
6 蔡斯特;芮曉明;倪海云;;架空線路導(dǎo)線分層力學(xué)模型及應(yīng)用研究[J];電力科學(xué)與工程;2009年10期
7 李宏男;李雪;李鋼;黃連狀;;覆冰輸電塔-線體系風(fēng)致動(dòng)力響應(yīng)分析[J];防災(zāi)減災(zāi)工程學(xué)報(bào);2008年02期
8 王洪;柳亦兵;董玉明;徐鴻;;架空線路導(dǎo)線疲勞試驗(yàn)振動(dòng)幅度的研究[J];中國(guó)電機(jī)工程學(xué)報(bào);2008年04期
9 趙成運(yùn);鄭良華;田春光;楊偉龍;;66kV架空輸電線路溫度場(chǎng)的數(shù)值研究[J];電網(wǎng)技術(shù);2007年S2期
10 王景朝,徐乃管;復(fù)合交變應(yīng)力條件下的導(dǎo)線疲勞試驗(yàn)方法[J];電力建設(shè);2001年02期
相關(guān)會(huì)議論文 前1條
1 閆桂玲;王弘;高慶;;平均應(yīng)力對(duì)50~#車(chē)軸鋼超高周疲勞性能的影響[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(下)[C];2005年
相關(guān)博士學(xué)位論文 前1條
1 孔德怡;基于動(dòng)力學(xué)方法的特高壓輸電線微風(fēng)振動(dòng)研究[D];華中科技大學(xué);2009年
相關(guān)碩士學(xué)位論文 前3條
1 王煦;鋼芯鋁絞(ACSR)架空導(dǎo)線微動(dòng)疲勞及其運(yùn)行狀態(tài)評(píng)估[D];合肥工業(yè)大學(xué);2012年
2 朱光葒;輸電線微風(fēng)振動(dòng)與疲勞壽命[D];哈爾濱工業(yè)大學(xué);2011年
3 楊振華;大跨越輸電線路微風(fēng)振動(dòng)分析[D];重慶大學(xué);2010年
,本文編號(hào):1402274
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1402274.html