風力發(fā)電系統(tǒng)容錯控制策略研究
發(fā)布時間:2018-01-08 09:15
本文關鍵詞:風力發(fā)電系統(tǒng)容錯控制策略研究 出處:《江南大學》2016年碩士論文 論文類型:學位論文
更多相關文章: 風力發(fā)電系統(tǒng) 最大風能捕獲 滑模控制器 傳感器故障 T-S模糊滑模觀測器 執(zhí)行器故障 故障重構 傳感器硬件冗余 自適應技術 容錯控制
【摘要】:風能作為一種重要的自然能源,本身具有清潔環(huán)保、能量巨大、可持續(xù)供應的特點,相比自然界的煤炭、石油、天然氣等其資源優(yōu)勢更加明顯,目前在緩解世界能源危機中占有重要地位。風力發(fā)電設備通常建在高山或遠離海岸的偏遠地方,氣候變化不可預測,在這樣高度惡劣、復雜的工作環(huán)境中,傳感器、執(zhí)行器故障發(fā)生頻繁,再加上風機本身具有非線性、多變量、強耦合等特點,對系統(tǒng)控制將會更加復雜。因此對風力發(fā)電系統(tǒng)進行實時故障診斷,實施有效的容錯控制是確保風力發(fā)電系統(tǒng)可靠運行的重要手段。論文對控制系統(tǒng)現(xiàn)有的故障診斷技術、容錯控制策略以及近年來風力發(fā)電系統(tǒng)的容錯控制方法進行了詳細調研,從風力機的空氣動力學效應出發(fā)介紹了風力機的最大風能利用效率及各子系統(tǒng)的數(shù)學模型,討論了系統(tǒng)在三種不同風速區(qū)域內的運行狀態(tài)。通過對性能參數(shù)葉尖速比、風能利用系數(shù)最優(yōu)值的計算及二者曲線圖的分析闡述了最大風能捕獲控制原理,并進行了仿真分析。針對風力發(fā)電系統(tǒng)的非線性、變量之間強耦合特點,利用結構簡單、逼近能力強的T-S模糊算法,建立系統(tǒng)全局T-S模糊模型。對滑?刂评碚摲治鼋o出等效控制量的求解方法并證明滑動模態(tài)對外界不確定因素的魯棒性。選取合適滑模面,利用系統(tǒng)的輸出信號作為控制器的輸入,基于LMI方法設計模糊滑模控制器用于風力發(fā)電系統(tǒng)閉環(huán)反饋控制,確保系統(tǒng)性能參數(shù)葉尖速比和風能利用系數(shù)維持在最優(yōu)值附近,實現(xiàn)部分負荷區(qū)的風能最大捕獲。考慮滑模觀測器在對非線性系統(tǒng)進行故障診斷時,能夠保持對外界擾動不敏感,具有強的魯棒性,論文將T-S模糊算法與滑模觀測器理論相結合,設計模糊T-S系統(tǒng)滑模觀測器對傳感器故障進行重構。然后對傳感器輸出信號進行校正,以校正后的傳感器輸出信號代替控制器輸入,實現(xiàn)風力發(fā)電系統(tǒng)主動容錯控制的目的。針對風力發(fā)電系統(tǒng)中執(zhí)行器故障與傳感器故障并存情形,利用傳感器硬件冗余技術結合狀態(tài)觀測器,建立殘差邏輯判斷表,實現(xiàn)多故障檢測;其次通過引入一個簡單的濾波器,將傳感器故障轉化為執(zhí)行器故障,建立一個由原有的執(zhí)行器故障和傳感器故障組成的虛擬執(zhí)行器故障,通過對虛擬執(zhí)行器故障的重構來實現(xiàn)兩種故障同時重構;將滑模算法與自適應技術結合用于風力發(fā)電系統(tǒng)的執(zhí)行器故障容錯控制中,保證故障系統(tǒng)能夠準確跟蹤所設計的期望狀態(tài)和輸出軌跡,達到容錯控制目的。
[Abstract]:Wind energy is a kind of important natural energy, has tremendous energy, clean and environmental protection, sustainable supply characteristics, compared with the nature of coal, petroleum, natural gas and other resources more obvious advantages, currently occupies an important position in alleviating the energy crisis in the world. Wind power equipment are often built in remote areas or mountains away from the coast. Climate change is unpredictable, in such a highly complex work environment is bad, sensor, and the actuator faults occur frequently, and the wind machine itself has a nonlinear, multi variable, strong coupling characteristics, the control system will be more complicated. So the real-time fault diagnosis of wind power generation system, the implementation of fault tolerant control is effective an important means to ensure the reliable operation of wind power system. The fault diagnosis technology of the existing control system, fault-tolerant control strategy and system in recent years wind power capacity The wrong control method to make a detailed investigation of the mathematical model describes the maximum wind energy utilization efficiency and each subsystem from the aerodynamic effect of wind turbine, discusses the system in three different wind speed within the area of operation. Through the tip of the performance parameters calculation speed, wind energy utilization coefficient of the optimal value and the two analysis of the graph illustrates the maximum wind power capture control principle, and simulation analysis. Aiming at the nonlinear wind power system, variable strong coupling characteristics, with simple structure, strong approximation ability of T-S fuzzy algorithm, establish the system of global T-S fuzzy model. The theoretical analysis gives the equivalent control method of sliding mode control and that sliding mode robustness of uncertain external factors. Select the appropriate sliding surface, using the output signal as the input of the controller, the design model based on LMI method Fuzzy sliding mode controller for closed-loop feedback control of wind power generation system, ensure the system performance parameters of the tip speed ratio and wind power coefficient remained in the vicinity of the optimal value, realize the maximum wind energy capture part load. Considering the sliding mode observer in the fault diagnosis of nonlinear systems, can keep the external disturbance is not sensitive, has strong robustness, the T-S algorithm and fuzzy sliding mode observer theory are combined to reconstruct the sensor fault T-S system design of fuzzy sliding mode observer. Then the output of the sensor signal is corrected by the sensor output signal after correction instead of the input of the controller, realize the wind power generation system. The purpose of the active fault-tolerant control for wind power system actuator fault and sensor fault coexist situation according to the state observer, using the sensor hardware redundancy technology, the establishment of residual logic table implementation Multi fault detection; secondly, by introducing a simple filter, will be transformed into actuator fault sensor fault, the establishment of a composed original actuator and sensor faults of virtual actuator fault, through the reconstruction of virtual actuator failures to achieve two kinds of fault and reconstruction; sliding mode algorithm and adaptive technique used for actuator fault-tolerant control of wind power generation system, ensure the accuracy of tracking the design expectation state and output trajectory can achieve fault system, fault tolerant control.
【學位授予單位】:江南大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TM614
,
本文編號:1396505
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1396505.html
最近更新
教材專著