復(fù)雜山地風(fēng)場及角鋼輸電塔風(fēng)荷載數(shù)值模擬研究
本文關(guān)鍵詞:復(fù)雜山地風(fēng)場及角鋼輸電塔風(fēng)荷載數(shù)值模擬研究 出處:《合肥工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 數(shù)值模擬 復(fù)雜地形 平衡大氣邊界層 風(fēng)載體型系數(shù) 風(fēng)荷載標準值
【摘要】:數(shù)值模擬是掌握山地風(fēng)場詳細信息的有力手段,可以為建筑結(jié)構(gòu)抗風(fēng)分析提供資料。建筑結(jié)構(gòu)荷載規(guī)范已經(jīng)就典型山體狀況的風(fēng)荷載進行了規(guī)定。鑒于復(fù)雜山地地形更加多變,復(fù)雜地形風(fēng)場不能依靠典型山體風(fēng)場的規(guī)定進行計算。因此,為進一步加強對復(fù)雜地形風(fēng)場的了解,彌補建筑結(jié)構(gòu)荷載規(guī)范的不足,有必要進行復(fù)雜地形風(fēng)場數(shù)值模擬。本文首先通過數(shù)值模擬獲得了平衡大氣邊界條件,確定了各種場地類型下的風(fēng)場參數(shù)獲取方法,接著通過數(shù)字高程數(shù)據(jù)建立三維復(fù)雜山地地形模型,利用FLUENT針對湍流求解的雷諾平均法,實現(xiàn)了復(fù)雜地形風(fēng)場的數(shù)值模擬,分析了不同類型風(fēng)場中考慮復(fù)雜地形影響后的風(fēng)速比及風(fēng)向角變化情況,同時計算得到了不同風(fēng)向角下研究位置處的風(fēng)速剖面。研究結(jié)果表明,同一種場地下風(fēng)速比及風(fēng)向不受入口來流風(fēng)速的改變影響,不同場地下兩者取值不同,其中風(fēng)速比差別均在12%以上,風(fēng)向差別更大,達到了40%。通過UG及GAMBIT建模軟件建立了窄基角鋼輸電塔的整體模型,研究了窄基角鋼輸電塔風(fēng)荷載體型系數(shù)隨不同參考風(fēng)速、來流風(fēng)向的變化情況,對考慮復(fù)雜地形影響后的輸電塔風(fēng)荷載標準值與規(guī)范值進行了對比。研究結(jié)果表明,體型系數(shù)的取值幾乎不受來流參考風(fēng)速的影響,輸電塔塔身段順與垂直線路方向的體型系數(shù)隨風(fēng)向角均是先增大后減小,橫擔(dān)體型系數(shù)變化基本與塔身變化一致,規(guī)范規(guī)定的體型系數(shù)比模擬值至少小于20%。在某些風(fēng)向角下,由于地形對風(fēng)速的加速效應(yīng)及規(guī)范的體型系數(shù)取值偏低等問題,復(fù)雜地形風(fēng)場下風(fēng)荷載標準值比規(guī)范取值大接近一倍,此結(jié)果對復(fù)雜地形輸電塔風(fēng)荷載的確定具有參考價值。
[Abstract]:The numerical simulation is to master the mountain wind field detailed information of the powerful means, can provide the information for wind resistance of building structure analysis. Building structure has been carried out on the provisions of the typical mountain wind load conditions. In view of the complicated terrain more changeable, complex terrain can not rely on the provisions of the typical mountain wind field is calculated. Therefore, for to further strengthen the understanding of complex terrain, compensate for the lack of code for the design of building structures, it is necessary to simulate the complex terrain wind field. This paper has been numerically simulated by equilibrium atmosphere boundary conditions, wind field parameters of various site types were determined under the acquisition method, and then through the digital elevation data to establish a three-dimensional complex terrain model by using the method of FLUENT, the Reynolds averaged turbulence for solving the complex terrain, numerical simulation of wind field, wind field analysis of the different types of senior high school entrance examination The wind speed ratio and considering effect of complex terrain after the wind direction changes, and calculate the velocity profile under different wind angles of position. The results show that changing the effect of one kind of wind speed and wind direction than the ground from the entrance flow velocity, different ground two different values, which are in the different wind speed ratio more than 12% of the wind, the greater the difference reached 40%., establish the overall model of the narrow base angle of transmission tower by UG and GAMBIT software, the narrow base angle of transmission tower wind load shape coefficient with different reference wind speed of change of flow direction, the transmission tower wind load standard value after considering the influence of complex terrain and the standard values were compared. The results show that the shape coefficient is almost not affected by the current wind speed, transmission tower body shape coefficient and vertical wind along the direction of the line to the angle is Increased first and then decreased, crossarm shape coefficient changes consistent with the change of tower body, shape coefficient of specification than analog value at less than 20%. in some wind direction, due to the problem of shape coefficient of low wind speed and acceleration effect of topography on complex terrain specification, wind load standard value than the standard value close to as the results to determine the complex terrain of wind load on transmission tower has reference value.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM75
【參考文獻】
相關(guān)期刊論文 前10條
1 郭威;張悅;;計算風(fēng)工程中k-ε模型的邊界條件研究[J];空氣動力學(xué)學(xué)報;2016年04期
2 沈國輝;項國通;郭勇;邢月龍;潘峰;;圓鋼輸電塔架的風(fēng)荷載體型系數(shù)研究[J];特種結(jié)構(gòu);2015年05期
3 唐煜;鄭史雄;趙博文;李明水;;平衡大氣邊界層自保持問題的研究[J];工程力學(xué);2014年10期
4 沈國輝;項國通;邢月龍;郭勇;孫炳楠;樓文娟;;2種風(fēng)場下格構(gòu)式圓鋼塔的天平測力試驗研究[J];浙江大學(xué)學(xué)報(工學(xué)版);2014年04期
5 樓文娟;王東;沈國輝;金曉華;;角鋼輸電塔桿件風(fēng)壓及體型系數(shù)的風(fēng)洞試驗研究[J];華中科技大學(xué)學(xué)報(自然科學(xué)版);2013年04期
6 胡朋;李永樂;廖海黎;;基于SST k-ω湍流模型的平衡大氣邊界層模擬[J];空氣動力學(xué)學(xué)報;2012年06期
7 梁思超;張曉東;康順;康雅蘭;趙永鋒;;基于數(shù)值模擬的復(fù)雜地形風(fēng)場風(fēng)資源評估方法[J];空氣動力學(xué)學(xué)報;2012年03期
8 李永樂;胡朋;蔡憲棠;熊文斌;廖海黎;;緊鄰高陡山體橋址區(qū)風(fēng)特性數(shù)值模擬研究[J];空氣動力學(xué)學(xué)報;2011年06期
9 謝華平;張回;;輸電塔塔頭平均風(fēng)荷載的CFD模擬[J];鋼結(jié)構(gòu);2011年08期
10 謝華平;何敏娟;馬人樂;;基于CFD模擬的格構(gòu)塔平均風(fēng)荷載分析[J];中南大學(xué)學(xué)報(自然科學(xué)版);2010年05期
相關(guān)碩士學(xué)位論文 前1條
1 王東;角鋼輸電塔風(fēng)荷載作用模式研究[D];浙江大學(xué);2013年
,本文編號:1392059
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1392059.html