厭氧流化床微生物燃料電池處理煤化工廢水
本文關(guān)鍵詞:厭氧流化床微生物燃料電池處理煤化工廢水 出處:《青島科技大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 厭氧流化床微生物燃料電池 焦化廢水 陽極修飾 氣質(zhì)聯(lián)用分析 產(chǎn)電性能 COD去除
【摘要】:能源節(jié)約和廢水處理已經(jīng)成為許多工廠面臨的共同難題。焦化廢水作為一種典型的、難降解的煤化工廢水,其主要成分包括氰化物、氨氮、酚類、多環(huán)芳烴及雜環(huán)化合物等物質(zhì)。據(jù)最新的機構(gòu)調(diào)查顯示,國內(nèi)多數(shù)煤化工企業(yè)對焦化廢水的處理效果不理想,生化出水COD和優(yōu)先控制污染物的濃度往往難以滿足國內(nèi)工業(yè)廢水的排放標(biāo)準(zhǔn)。微生物燃料電池作為一種新型的生物能源裝置,能夠在處理污水的同時產(chǎn)生電能。本課題研究將厭氧流化床(AFB)工藝同微生物燃料電池技術(shù)(MFC)相結(jié)合,對AFB-MFC處理焦化廢水的產(chǎn)電性能及污水處理效果進行了研究。本文采用共沉淀法制備了修飾材料納米Fe_3O_4,并對原石墨棒陽極進行了修飾改性。經(jīng)交流阻抗和循環(huán)伏安測試表明Fe_3O_4修飾石墨棒陽極增強了電極表面?zhèn)鬟f電荷的能力,提高了陽極的動力學(xué)活性。Fe_3O_4修飾陽極后MFC的產(chǎn)電性能有了明顯的提高,其最大輸出電壓和功率密度分別為243 mV和9.81 mW/m~2,分別比未修飾前的提高了23.4%和114%。在優(yōu)化了電極材料的基礎(chǔ)上,以焦化廢水為基質(zhì),考察了進水濃度及直接馴化、梯度馴化和富集培養(yǎng)三種微生物馴化方式對AFB-MFC產(chǎn)電性能及焦化廢水處理效果的影響。研究結(jié)果表明,污泥經(jīng)梯度馴化后AFB-MFC的性能最佳,AFB-MFC獲得的最大功率密度和COD去除率分別為10.95 mW/m~2和86.28%。以不同進水濃度(952、1528、2238、3419 mg/L)的焦化廢水作為底物發(fā)電時,AFB-MFC獲得的最大輸出電壓和功率密度隨進水濃度的增加呈先增大后減小的趨勢,當(dāng)進水COD濃度為2238 mg/L時,MFC獲得最大輸出電壓和功率密度分別為284.5mV和14.69 mW/m~2。另外,本實驗結(jié)合液液萃取和GC/MS技術(shù)分析了焦化廢水處理過程中有機物組成及降解特性。研究結(jié)果顯示AFB-MFC對焦化廢水有較好的處理效果,其中酚、苯、醇、雜環(huán)化合物與多環(huán)芳烴等物質(zhì)充分降解,去除率分別為99.63%、97.6%、98.3%、95.75%和92.87%。同時采用GC-MS內(nèi)標(biāo)法準(zhǔn)確分析了其中主要酚類的質(zhì)量濃度,該分析方法檢出限為2.48~5.50μg/L,平均加標(biāo)回收率在72.6%~115.8%之間,相對標(biāo)準(zhǔn)偏差RSD≤11.28%,能夠滿足酚類有機物的測試要求。由中間產(chǎn)物甲基苯甲酸初步推斷出在厭氧流化床微生物燃料電池中,甲酚首先羧化生成苯甲酸類物質(zhì)再進一步氧化開環(huán)裂解。當(dāng)苯酚、鄰甲酚和2,4-二甲基苯酚的初始濃度分別為274.7、231.8和76.7 mg/L時,AFB-MFC對三種酚類的降解反應(yīng)符合一級動力學(xué),其速率常數(shù)K分別為0.06989、0.07641和0.08783h~(-1)。
[Abstract]:Energy saving and wastewater treatment has become a common problem facing many factories. The coking wastewater is a typical refractory wastewater, coal chemical industry, the main components including cyanide, ammonia, phenols, polycyclic aromatic hydrocarbons and heterocyclic compounds. According to the latest survey, the treatment effect of the majority of domestic coking wastewater coal chemical industry is not ideal, the effluent COD and priority pollutants concentration is often difficult to meet the domestic and industrial wastewater discharge standards. The microbial fuel cell as a bio energy device, at the same time in the treatment of sewage to generate electricity. The research of anaerobic fluidized bed (AFB) process with microbial fuel cell technology (MFC) the combination of treatment of coking wastewater by AFB-MFC electricity generation and wastewater treatment effect were studied. This paper uses the modified nanometer Fe_3O_4 was prepared by co precipitation method And, the original stone inker anodes were modified. The AC impedance and cyclic voltammetry tests showed that Fe_3O_4 modified graphite anode rod to enhance the ability of the electrode surface charge transfer, the electricity production of MFC.Fe_3O_4 modified anode kinetic activity the increase has been significantly improved, the maximum output voltage and power density respectively. 243 mV and 9.81 mW/m~2, respectively, was increased by 23.4% and 114%. in the optimization based on the electrode material, the coking wastewater as substrate, the effects of influent concentration and direct gradient domestication, domestication and enrichment effects of three microbial acclimation on the electricity production of AFB-MFC and coking wastewater treatment research. The results show that the sludge after domestication by gradient AFB-MFC AFB-MFC to obtain the best performance, the maximum power density and the removal rate of COD were 10.95 mW/m~2 and 86.28%. with different influent concentration (9 52152822383419 mg/L) of the coking wastewater as substrate power, AFB-MFC maximum output voltage and power density with the increase in influent concentration decreased, when the concentration of COD was 2238 mg/L, MFC maximum output voltage and power density were 284.5mV and 14.69 mW/m~2. in this experiment combined with liquid-liquid extraction GC/MS technology and analysis of organic matter during coking wastewater treatment and degradation characteristics. The results show that AFB-MFC has better treatment effect on coking wastewater including phenol, benzene, alcohol, heterocyclic compounds and polycyclic aromatic hydrocarbons and other substances to degradation, removal rates were 99.63%, 97.6%, 98.3%, 95.75% and 92.87%. at the same time, the accurate analysis the concentration of phenolic and GC-MS internal standard method, the analysis method of the detection limit is 2.48~5.50 g/L, the average recoveries between 72.6%~115.8%, relative standard The deviation of RSD is less than 11.28%, which can meet the test requirements of phenolic compounds. The intermediate product methyl benzoic acid is inferred in anaerobic fluidized bed microbial fuel cell, the first generation of cresol carboxylic benzoic acid compounds and further oxidation of the ring cleavage. When the initial concentration of phenol, o-cresol and 2,4- two methyl phenol were 274.7231.8 and 76.7 mg/L, the degradation reaction of AFB-MFC to three kinds of phenols with the first-order kinetics, the rate constants of K were 0.06989,0.07641 and 0.08783h~ (-1).
【學(xué)位授予單位】:青島科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:X78;TM911.45
【參考文獻】
相關(guān)期刊論文 前10條
1 范小豐;成岳;袁萃賢;;MFC處理低濃度焦化廢水的試驗研究[J];工業(yè)水處理;2016年08期
2 李政;顧貴洲;趙朝成;趙東風(fēng);楊磊;;高相對分子質(zhì)量多環(huán)芳烴的生物共代謝降解[J];石油學(xué)報(石油加工);2015年03期
3 徐娜;劉新民;;厭氧流化床微生物燃料電池串聯(lián)處理啤酒廢水[J];山東化工;2015年09期
4 劉春梅;劉磊;徐斌;劉建新;;底物濃度和緩沖液濃度對MFC性能影響研究[J];環(huán)境科學(xué)與技術(shù);2015年02期
5 宮本月;劉新民;郭慶杰;;厭氧流化床微生物燃料電池及其串并聯(lián)性能[J];環(huán)境工程學(xué)報;2014年10期
6 彭新紅;于宏兵;王鑫;;納米Fe_3O_4含量對微生物燃料電池性能的影響[J];應(yīng)用化學(xué);2013年07期
7 劉興倩;王許云;郭慶杰;;PEDOT/MWCNTs復(fù)合陽極的制備及在MFC中的應(yīng)用[J];化工學(xué)報;2013年05期
8 陳釗宇;王佳;楊平;;微生物燃料電池處理難降解有機廢水研究現(xiàn)狀[J];環(huán)境科學(xué)與技術(shù);2012年S1期
9 鄭聰聰;郭慶杰;王許云;孔維芳;;MFC聚苯胺碳納米管陽極電化學(xué)法制備及其性能[J];化工學(xué)報;2012年05期
10 張萬輝;韋朝海;晏波;任曼;彭平安;;焦化廢水中溶解性有機物組分的特征分析[J];環(huán)境化學(xué);2012年05期
相關(guān)博士學(xué)位論文 前2條
1 宋國新;焦化廢水及其處理過程中有機污染物成分辨別原理與技術(shù)研究[D];復(fù)旦大學(xué);2012年
2 王巖;近海沉積物中幾種多環(huán)芳烴的生物降解研究[D];中國海洋大學(xué);2011年
相關(guān)碩士學(xué)位論文 前3條
1 朱蒙佳;厭氧—好氧間歇工藝處理煤氣化廢水的試驗研究[D];上海交通大學(xué);2014年
2 趙書菊;厭氧流化床微生物燃料電池處理廢水的研究[D];青島科技大學(xué);2010年
3 杜彥杰;多段生化法處理煤化工廢水的生產(chǎn)性實驗研究[D];哈爾濱工業(yè)大學(xué);2009年
,本文編號:1388386
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1388386.html