典型風(fēng)電機(jī)組阻尼機(jī)理分析及強(qiáng)迫振蕩抑制方法研究
本文關(guān)鍵詞:典型風(fēng)電機(jī)組阻尼機(jī)理分析及強(qiáng)迫振蕩抑制方法研究 出處:《華北電力大學(xué)(北京)》2016年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 風(fēng)電場 隨機(jī)-確定性 耦合 穩(wěn)定機(jī)理 阻尼 復(fù)轉(zhuǎn)矩 強(qiáng)迫振蕩
【摘要】:電力系統(tǒng)穩(wěn)定性是影響著互聯(lián)電網(wǎng)安全可靠和經(jīng)濟(jì)運行的關(guān)鍵。而其中的大規(guī)模風(fēng)電接入給電力系統(tǒng)的安全穩(wěn)定運行帶來了嚴(yán)峻考驗,同時大規(guī)模風(fēng)電接入系統(tǒng)后所呈現(xiàn)的復(fù)雜現(xiàn)象也日益顯現(xiàn)出來。當(dāng)前學(xué)術(shù)界和工業(yè)界對造成這些頻繁出現(xiàn)的穩(wěn)定性事故還缺乏機(jī)理性認(rèn)識,故大規(guī)模風(fēng)電融入電力系統(tǒng)的穩(wěn)定原理研究顯得日益迫切,此將為新能源電力系統(tǒng)的運行和控制提供科學(xué)依據(jù)。與常規(guī)能源發(fā)電比較,風(fēng)電具有很大的不同,主要表現(xiàn)在:①風(fēng)電出力隨機(jī)波動,另有風(fēng)電機(jī)組控制目標(biāo)為最大程度捕獲風(fēng)能,故風(fēng)電場出力存在不可調(diào)度性,而大規(guī)模風(fēng)電接入電網(wǎng)將引起大面積電網(wǎng)潮流轉(zhuǎn)移,且此轉(zhuǎn)移亦具有不確定性;②對于非同步風(fēng)力發(fā)電機(jī)組,其運行特征及轉(zhuǎn)動慣性不同于傳統(tǒng)同步發(fā)電機(jī)組,大量風(fēng)電機(jī)組接入抑或取代常規(guī)發(fā)電機(jī)組(特別是取代安裝電力系統(tǒng)穩(wěn)定器的同步機(jī)組)將對整個系統(tǒng)的轉(zhuǎn)動慣量、運行特性和阻尼特征產(chǎn)生影響;⑨由常規(guī)同步機(jī)組構(gòu)成的常規(guī)電力系統(tǒng)中,同步電源間具有自同步機(jī)制,因此發(fā)電機(jī)組具有自我同步能力,但對于非同步的風(fēng)電機(jī)組來說,由于其同步機(jī)制與電網(wǎng)存在主從關(guān)系,故并不具備此特征;④較之常規(guī)發(fā)電機(jī)組具有成熟控制系統(tǒng)和較大單機(jī)容量,風(fēng)電機(jī)組單機(jī)容量小(一般在MW級),風(fēng)電場群基本由成百上千臺風(fēng)機(jī)共同構(gòu)成,因此隨機(jī)波動的風(fēng)速及電網(wǎng)故障將導(dǎo)致風(fēng)電機(jī)組的一系列連鎖動作,而這種連鎖過程具有隨機(jī)擴(kuò)散性,故在風(fēng)電功率連續(xù)隨機(jī)波動的基礎(chǔ)上,大量離散型隨機(jī)擾動又被引入系統(tǒng),使得融合了大規(guī)模風(fēng)電的電力系統(tǒng)的動態(tài)特征逐漸向隨機(jī)混成動力學(xué)系統(tǒng)的方向靠攏。接入電網(wǎng)的大規(guī)模風(fēng)電導(dǎo)致原來可控可調(diào)度的同步電力系統(tǒng)中結(jié)合了大量具有隨機(jī)波動性的新能源電源,這些具有隨機(jī)波動性的新能源電源使得現(xiàn)代電力系統(tǒng)轉(zhuǎn)變?yōu)殡S機(jī)一確定性耦合電力系統(tǒng)。這種耦合電力系統(tǒng)的穩(wěn)定性問題中含有了大量新挑戰(zhàn),例如:系統(tǒng)的本征結(jié)構(gòu)被大規(guī)模風(fēng)電機(jī)組并入所改變,進(jìn)而電力系統(tǒng)原有的穩(wěn)定機(jī)制亦被改變;風(fēng)電接入同步系統(tǒng)后的系統(tǒng)平衡點大幅度隨機(jī)移動問題;隨機(jī)—確定性電力系統(tǒng)的穩(wěn)定性分類、定義及其判據(jù);風(fēng)電接入點和接入規(guī)模不同對系統(tǒng)功角、電壓、低頻振蕩的影響原理等,給常規(guī)電力系統(tǒng)的穩(wěn)定理論和方法帶來了新的挑戰(zhàn)。根據(jù)現(xiàn)有研究,由于風(fēng)電場接入位置、風(fēng)電穿透率、風(fēng)機(jī)運行工況、勵磁系統(tǒng)控制參數(shù)不同,同步系統(tǒng)在吸納風(fēng)電后功角振蕩模式阻尼會產(chǎn)生相應(yīng)變化,但其原因尚不確定。而對于風(fēng)電接入電力系統(tǒng)小擾動穩(wěn)定性分析,基本分析方式為在保證網(wǎng)絡(luò)潮流分布相等的前提下,以同出力(同有功無功)風(fēng)電機(jī)組替代同步機(jī)組,對比替代前后的系統(tǒng)特征變動,得出是否穩(wěn)定的結(jié)論。此類方法具有普適性,但也存在其物理意義不明確的問題,即:雖然可看出風(fēng)電場對電力系統(tǒng)阻尼影響的結(jié)論,但其阻尼成因、阻尼性質(zhì)和大小及其相應(yīng)影響因素,則無法給出具有物理意義的機(jī)理性解釋。此外,由于風(fēng)速波動的存在導(dǎo)致風(fēng)電場出力隨之波動,在功角振蕩模式阻尼被接入的風(fēng)電機(jī)改變的情況下,有可能誘發(fā)同步系統(tǒng)功角大幅強(qiáng)迫振蕩,危及系統(tǒng)安全穩(wěn)定運行。因此研究典型風(fēng)電機(jī)組阻尼產(chǎn)生機(jī)理,以及風(fēng)速波動引發(fā)的強(qiáng)迫振蕩是十分必要的。本文首先論證了雙饋風(fēng)機(jī)對于同步系統(tǒng)的阻尼意義,從小擾動方程特征值角度對雙饋風(fēng)機(jī)的阻尼成因進(jìn)行分析。通過研究雙饋風(fēng)機(jī)的機(jī)電解耦特性,闡明雖然其機(jī)械部分與電網(wǎng)呈非耦合狀態(tài),但其由于其電磁部分動態(tài)過程的存在,雙饋風(fēng)機(jī)可以視作電網(wǎng)的阻尼源,即雙饋風(fēng)機(jī)的存在會增大系統(tǒng)各模式總阻尼之和,并進(jìn)一步提出其提供的阻尼將以特定方式分配至系統(tǒng)功角模式上。此理論證明了雙饋風(fēng)場對系統(tǒng)功角振蕩阻尼的成因。其次,本文從復(fù)阻尼轉(zhuǎn)矩的角度,賦予了風(fēng)電機(jī)組提供的功角阻尼物理意義,即論證了風(fēng)電機(jī)組作為動態(tài)原件,其阻尼大小及性質(zhì)可由其復(fù)阻尼轉(zhuǎn)矩向量判別。并且推證了風(fēng)電機(jī)組的勵磁控制參數(shù)顯著影響此復(fù)阻尼轉(zhuǎn)矩性質(zhì)。第三,從強(qiáng)迫振蕩角度,論證了風(fēng)速以特定頻率波動時將在同步機(jī)中引發(fā)功角振蕩,并且此振蕩程度強(qiáng)弱與風(fēng)機(jī)提供的功角阻尼程度有顯著相關(guān)。據(jù)此提出,可以通過調(diào)節(jié)風(fēng)機(jī)勵磁參數(shù)來來抑制同步系統(tǒng)受迫振蕩強(qiáng)度。
[Abstract]:The stability of the power system is the key to the safety and reliability of the interconnected power grid and the economic operation. The large-scale wind power access has brought severe tests to the safe and stable operation of the power system. At the same time, the complexity of the large-scale wind power access system is increasingly showing. At present, academia and industry lack rational understanding of these frequent accidents. Therefore, it is increasingly urgent to study the stability theory of large-scale wind power integration into power system. This will provide a scientific basis for the operation and control of new energy power system. Compared with conventional energy generation, wind power is very different, mainly reflected in: random wind power output fluctuation, and wind turbine control objectives for maximum wind energy capture of wind power output, so there is no schedulability, and large scale wind power will cause a large area of power flow transfer and the transfer have uncertainty; for the non synchronous wind turbine, its operation characteristics and inertia is different from the traditional synchronous generator, a wind turbine or generator to replace the conventional access (especially to replace the installation of power system stabilizer synchronization unit) rotary inertia and operation characteristics and damping characteristics of the system impact; the conventional power system to constitute by conventional synchronous generators, synchronous power with self synchronization mechanism, so power unit with self synchronization ability, but for non synchronization The wind turbine, because of the existence of the master-slave relationship between synchronization mechanism and power grid, it does not have this feature; mature control system and large capacity with the compared with the conventional generator, wind turbine capacity small (MW grade), wind farm group by hundreds of thousands of fans together, so the random fluctuation of wind speed and power failure will lead to a series of chain operation of wind turbine, and the linkage process with stochastic diffusion, the wind power based continuous stochastic volatility, a large number of discrete and stochastic disturbance is introduced into the system, the dynamic characteristics of integration of large-scale wind power system gradually move closer to the hybrid dynamical systems random direction. Large scale wind power in power system can be controlled and the original synchronous scheduling in a combination of new energy power supply with a large number of stochastic volatility and stochastic volatility with these new energy power makes the modern power system into a deterministic stochastic coupled power system. The stability problem of this coupling power system contains a large number of new challenges, such as: the intrinsic structure of the system is changed into large-scale wind turbines, stable mechanism and the original power system was also changed; equilibrium wind power synchronization system after greatly with the mobile machine problem; random uncertainty of power system the stability of classification, definition and criterion; wind power access point and the access system of different scale power angle, voltage, low frequency oscillation effect principle, has brought new challenges to the stability theory and method of conventional power system. According to the existing research, due to the different location of wind farms, wind penetration, fan operation and excitation system control parameters, the damping of power angle oscillation mode will change correspondingly after absorbing wind power, but the reason is uncertain. For the wind power system small signal stability analysis, the basic analysis method for distribution network power flow under the premise of ensuring equal, with the same output (with active reactive) wind turbine instead of synchronous generators, change system features between before and after replacement, it is stable. This method is universal, but also has its physical meaning is not clear the problem, namely: although it can be seen that influence of wind farm on power system damping the conclusion, but the damping causes, damping property and size and its influence factors, is unable to give rational physical meaningful explanation. Besides, the output of wind farms will fluctuate due to the presence of wind speed fluctuations. When the power angle oscillation mode is changed, the power angle of the synchronous system will be greatly forced oscillation, which will endanger the safe and stable operation of the system. Therefore, it is necessary to study the damping mechanism of the typical wind turbine and the forced oscillation caused by the wind speed fluctuation. In this paper, the damping meaning of the doubly fed fan for synchronous system is demonstrated, and the damping cause of the doubly fed fan is analyzed by the angle of the eigenvalue of the small disturbance equation. The characteristics of electromechanical decoupling of DFIG, that although its mechanical part and a non grid coupling state, but due to the process of electromagnetic dynamic existence, damping source of DFIG can be regarded as the power grid, the DFIG will increase the system damping and mode, and further it provides damping in a specific way to distribution system power angle model. This theory proves the cause of the power angle oscillation damping of the double fed wind field. Secondly, from the angle of complex damping torque, this paper gives the physical meaning of power angle damping provided by wind turbines. It is proved that the size and nature of the damping of wind turbines can be judged by their complex damping torque vectors. It is also proved that the excitation control parameters of the wind turbine have a significant influence on the complex damping torque properties. Third, from the perspective of forced oscillation, it is demonstrated that when the wind speed fluctuates at a specific frequency, it will cause power angle oscillation in synchronous machine, and the degree of this oscillation is significantly related to the degree of power angle damping provided by the fan. Accordingly, it is suggested that the forced oscillation intensity of the synchronous system can be suppressed by adjusting the excitation parameters of the fan.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TM614
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 J.M.DEUR;R.O.HESSLER;榮先成;;強(qiáng)迫振蕩理論[J];國外固體火箭技術(shù);1985年04期
2 黃敏;陳式蘇;;強(qiáng)迫振蕩法測定呼吸系統(tǒng)通氣功能[J];中國醫(yī)療器械雜志;1990年06期
3 鞠平;劉詠飛;王紅印;孫建華;余一平;;電力系統(tǒng)的廣義強(qiáng)迫振蕩[J];電力自動化設(shè)備;2014年05期
4 袁亞洲;許其品;徐蓉;鄧小君;萬泉;;大型水電機(jī)組強(qiáng)迫振蕩機(jī)理分析及試驗研究[J];水電自動化與大壩監(jiān)測;2012年01期
5 胡楠;李興源;楊毅強(qiáng);郭曉江;李寬;肖俊;;電力系統(tǒng)強(qiáng)迫振蕩的頻率時空變化特性研究與擾動源定位[J];四川大學(xué)學(xué)報(工程科學(xué)版);2013年06期
6 顧麗鴻;周孝信;陶洪鑄;嚴(yán)劍峰;;局部弱聯(lián)誘發(fā)互聯(lián)電網(wǎng)強(qiáng)迫振蕩機(jī)制分析[J];電網(wǎng)技術(shù);2010年12期
7 黃敏;陳式蘇;;復(fù)合正弦強(qiáng)迫振蕩呼吸系統(tǒng)阻抗測量裝置的研制[J];中國醫(yī)療器械雜志;1990年03期
8 劉志堅;周術(shù)明;黃蓉;;計及水輪機(jī)調(diào)速系統(tǒng)作用的電力系統(tǒng)強(qiáng)迫振蕩機(jī)理研究[J];昆明理工大學(xué)學(xué)報(自然科學(xué)版);2012年05期
9 劉華珠;楊海勇;;強(qiáng)迫振蕩呼吸阻力監(jiān)測儀數(shù)據(jù)分析驗證準(zhǔn)則[J];科學(xué)技術(shù)與工程;2013年10期
10 史華勃;劉天琪;李興源;;交直流輸電系統(tǒng)低頻振蕩仿真分析[J];電力系統(tǒng)及其自動化學(xué)報;2013年01期
相關(guān)會議論文 前1條
1 王華;周健;岑仲然;唐穎;周俊杰;譚曉瑩;常平;陳榮昌;;一種可用于無創(chuàng)通氣的呼吸阻力強(qiáng)迫振蕩測量裝置[A];第三屆重癥醫(yī)學(xué)大會論文匯編[C];2009年
相關(guān)博士學(xué)位論文 前1條
1 王華;強(qiáng)迫振蕩技術(shù)在無創(chuàng)正壓通氣中的應(yīng)用研究[D];廣州醫(yī)學(xué)院;2008年
相關(guān)碩士學(xué)位論文 前5條
1 牛子華;典型風(fēng)電機(jī)組阻尼機(jī)理分析及強(qiáng)迫振蕩抑制方法研究[D];華北電力大學(xué)(北京);2016年
2 張竹競;強(qiáng)迫振蕩及安全性快速惡化的人工緊急調(diào)控輔助決策研究[D];南京理工大學(xué);2014年
3 趙帥和;用于獲取動導(dǎo)數(shù)的風(fēng)洞強(qiáng)迫振蕩法之繩牽引并聯(lián)支撐系統(tǒng)的設(shè)計與研究[D];華僑大學(xué);2012年
4 楊海勇;醫(yī)用新型強(qiáng)迫振蕩呼吸阻力監(jiān)測儀的應(yīng)用與研究設(shè)計[D];華南理工大學(xué);2012年
5 陳鎣;近壁面強(qiáng)迫振蕩圓柱水動力特性研究[D];上海交通大學(xué);2013年
,本文編號:1343628
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1343628.html