直角型壓電懸臂梁振動(dòng)能量采集器的理論與實(shí)驗(yàn)研究
本文關(guān)鍵詞:直角型壓電懸臂梁振動(dòng)能量采集器的理論與實(shí)驗(yàn)研究 出處:《浙江工商大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 寬頻帶 直角型 壓電振動(dòng) 能量采集器 仿真分析 實(shí)驗(yàn)研究
【摘要】:無線傳感器網(wǎng)絡(luò)的節(jié)點(diǎn)一般使用電池供電,有限的電池能量嚴(yán)重影響無線傳感器網(wǎng)絡(luò)的使用生命周期。化學(xué)電池需要定期要充電或者更換,這將會(huì)造成人力、物力資源的浪費(fèi)和環(huán)境污染等各種問題,F(xiàn)代集成電路技術(shù)的不斷發(fā)展,應(yīng)用能量采集技術(shù)為傳感器節(jié)點(diǎn)供給能量,從而實(shí)現(xiàn)延長它們的使用壽命,不用再頻繁更換電池。能量采集技術(shù)的應(yīng)用可實(shí)現(xiàn)持續(xù)工作、環(huán)保清潔、節(jié)省成本等特點(diǎn),是解決無線傳感器網(wǎng)絡(luò)的自供電的一個(gè)關(guān)鍵技術(shù)。利用壓電效應(yīng)可以把壓電材料工作環(huán)境中的振動(dòng)能量轉(zhuǎn)化為電能。這種新技術(shù)能夠?qū)崿F(xiàn)網(wǎng)絡(luò)節(jié)點(diǎn)的自供能,擺脫了化學(xué)電池工作時(shí)間有限、污染、回收處理代價(jià)高等束縛,是一種清潔、持久的新形式能量采集技術(shù)。現(xiàn)在,能量采集技術(shù)已經(jīng)成為中外科研的一個(gè)非常重要的研究課題。能量采集器種類繁多,其中應(yīng)用前景最好的是壓電振動(dòng)能量采集器,原因是振動(dòng)能不但是環(huán)境中普遍存在而且其輸出功率密度值較大,該能量采集器有結(jié)構(gòu)簡單、易集成等優(yōu)點(diǎn)。而末端固定有質(zhì)量塊的壓電雙晶懸臂梁結(jié)構(gòu)是典型的壓電式振動(dòng)能量采集器結(jié)構(gòu),該結(jié)構(gòu)缺點(diǎn)有工作效率低、工作頻帶較高、諧振響應(yīng)帶寬過窄等。因此,拓寬諧振響應(yīng)頻率帶寬是提高壓電式振動(dòng)能量采集轉(zhuǎn)換效率和最佳輸出性能的關(guān)鍵因素。本文根據(jù)壓電理論提出了一種新型的直角型壓電懸臂梁振動(dòng)能量采集器并制作了原型實(shí)物器件,通過在典型的壓電雙晶懸臂梁結(jié)構(gòu)的水平梁自由端增加一個(gè)垂直懸臂梁并且垂直梁上部頂端固定有一質(zhì)量塊,利用這兩部分的彈性耦合作用組成直角型壓電懸臂梁壓電振動(dòng)能量采集器。根據(jù)壓電效應(yīng)原理,建立了該直角型壓電振動(dòng)能量采集器的有限元機(jī)電耦合模型和理論模型,以拓寬工作頻帶為目標(biāo),通過調(diào)整優(yōu)化水平或者垂直壓電雙晶懸臂梁的結(jié)構(gòu)尺寸以及材料參數(shù),能夠有效地縮小該采集器的一階、二階固有頻率之間的間距,最終形成一個(gè)低頻寬頻工作帶。由于該結(jié)構(gòu)具有低頻寬頻等特點(diǎn),有針對性的克服了上述缺點(diǎn)。論文主要研究工作有:(1)設(shè)計(jì)了直角型壓電振動(dòng)能量采集器的結(jié)構(gòu),應(yīng)用ANSYS軟件建立了直角型壓電懸臂梁振動(dòng)能量采集器有限元機(jī)電耦合模型,仿真分析了采集器各參數(shù)對系統(tǒng)諧振頻率、振動(dòng)特性和電輸出等特性的影響,得到了其最優(yōu)的結(jié)構(gòu)尺寸以及設(shè)計(jì)參數(shù)。(2)結(jié)合運(yùn)用壓電、Euler-Bernoulli梁振動(dòng)和Hamilton等理論,建立了直角型壓電振動(dòng)能量采集器的機(jī)電耦合動(dòng)力學(xué)模型,推導(dǎo)了系統(tǒng)的諧振頻率、特征方程和能量采集輸出方程。運(yùn)用MATLAB軟件對其進(jìn)行仿真,得到該采集器各參數(shù)中影響系統(tǒng)固有頻率、幅頻、電輸出性能等的關(guān)鍵因子。(3)研制了直角型壓電振動(dòng)能量采集器的實(shí)驗(yàn)樣機(jī),搭建了實(shí)驗(yàn)測試平臺,通過實(shí)驗(yàn)結(jié)果與理論模型和仿真結(jié)果的對比分析,驗(yàn)證了理論分析結(jié)果的正確性。(4)對本文研究進(jìn)行了總結(jié)和展望,提出了下一步研究工作的重點(diǎn)。
[Abstract]:The nodes of wireless sensor networks usually use battery power, and the limited battery energy seriously affects the life cycle of wireless sensor networks. Chemical batteries need to be charged or replaced regularly, which will cause a variety of problems, such as the waste of human resources, material resources and environmental pollution. With the continuous development of modern integrated circuit technology, energy harvesting technology is applied to provide energy for sensor nodes, so as to extend their service life, and do not need to replace batteries more frequently. The application of energy harvesting technology can achieve continuous work, environmental protection, cleanliness, cost saving and other characteristics. It is a key technology to solve the self power supply of wireless sensor networks. By using the piezoelectric effect, the vibration energy in the working environment of the piezoelectric material can be converted into electrical energy. This new technology can realize the network node energy, get rid of the chemical battery working time is limited, pollution and recycling cost of higher bound, is a new form of energy acquisition technology of clean and durable. Now, energy acquisition technology has become a very important research topic in China and foreign countries. There are many kinds of energy harvesters. The most promising application is piezoelectric vibration energy harvester. The reason is that vibration energy is not only widespread in the environment, but also has large output power density. The energy harvester has the advantages of simple structure and easy integration. The piezoelectric bimorph cantilever structure with mass block at the end is a typical structure of piezoelectric vibration energy harvester, which has the shortcomings of low efficiency, high working frequency and narrow resonant response bandwidth. Therefore, the broadening of the frequency bandwidth of the resonant response is the key factor to improve the conversion efficiency and the optimal output performance of the piezoelectric vibration energy acquisition. Based on the piezoelectric theory proposed a new type of rectangular piezoelectric cantilever vibration energy harvester and produced a prototype by physical devices in a typical piezoelectric bimorph cantilever beam free end level adds a vertical cantilever beam and the vertical beam at the top is fixed with a mass, using the elastic coupling effect of the the two part consists of rectangular piezoelectric cantilever piezoelectric vibration energy harvester. According to the principle of piezoelectric effect, established the rectangular piezoelectric vibration energy harvester electromechanical coupling finite element model and theoretical model, to broaden the frequency band as the goal, by adjusting the horizontal or vertical structure and size of piezoelectric bimorph cantilever beam and the material parameters, can effectively reduce the spacing between the first and two. Natural frequencies, and ultimately the formation of a wide band frequency. Because the structure has the characteristics of low frequency and wide frequency and so on, it has overcome the above shortcomings. The main works of this paper are: (1) the structure design of rectangular piezoelectric vibration energy harvester, application of ANSYS software to establish a rectangular piezoelectric cantilever beam vibration energy harvester electromechanical coupling finite element model, the simulation analysis of the influence of various parameters on the collector system resonant frequency, vibration characteristics and electrical output characteristics, the the optimal structure size and design parameters. (2) combined with the theory of piezoelectricity, Euler-Bernoulli beam vibration and Hamilton, the electromechanical coupling dynamic model of the right angle piezoelectric vibration energy harvester is established, and the resonant frequency, characteristic equation and energy collection and output equation of the system are derived. The MATLAB software is used to simulate it, and the key factors that affect the natural frequency, amplitude frequency and electrical output performance of the system are obtained. (3) the experimental prototype of the right angle piezoelectric vibration energy harvester has been developed, and the experimental platform has been built. The correctness of the theoretical analysis is verified by comparing the experimental results with theoretical models and simulation results. (4) the research of this paper is summarized and prospected, and the key points of the next research work are put forward.
【學(xué)位授予單位】:浙江工商大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TM619
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 唐剛;劉景全;馬華安;柳和生;;微型壓電振動(dòng)能量采集器的研究進(jìn)展[J];機(jī)械設(shè)計(jì)與研究;2010年04期
2 李偉;車錄鋒;王躍林;;橫向電磁式振動(dòng)能量采集器的設(shè)計(jì)與制作[J];光學(xué)精密工程;2013年03期
3 陳宏;袁浩東;張帥偉;侯亞丁;趙營豪;;基于振動(dòng)能量的設(shè)備狀態(tài)評價(jià)方法研究[J];機(jī)械設(shè)計(jì)與制造;2013年02期
4 王佩紅;戴旭涵;方東明;趙小林;;微型電磁式振動(dòng)能量采集器的設(shè)計(jì)和電磁特性仿真研究[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年04期
5 侯志偉;陳仁文;劉祥建;;多方向壓電振動(dòng)能量收集裝置及其優(yōu)化設(shè)計(jì)[J];振動(dòng)與沖擊;2012年16期
6 趙志剛;丁旭升;劉福貴;楊茁萌;;微型電磁式振動(dòng)能量采集器的結(jié)構(gòu)設(shè)計(jì)與仿真研究[J];電工技術(shù)學(xué)報(bào);2012年08期
7 劉成龍;孟愛華;陳文藝;李厚福;宋紅曉;;振動(dòng)能量收集技術(shù)的研究現(xiàn)狀與發(fā)展趨勢[J];裝備制造技術(shù);2013年12期
8 伍先俊;朱石堅(jiān);;振動(dòng)能量流的計(jì)算方法研究[J];農(nóng)業(yè)工程學(xué)報(bào);2006年03期
9 代顯智;;實(shí)現(xiàn)低功耗設(shè)備自供電的振動(dòng)能量采集技術(shù)[J];科技信息;2011年17期
10 展永政;王光慶;;壓電振動(dòng)能量采集器的性能分析與功率優(yōu)化[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2014年07期
相關(guān)會(huì)議論文 前9條
1 張文明;;微型振動(dòng)能量采集器的研究進(jìn)展[A];第四屆全國動(dòng)力學(xué)與控制青年學(xué)者研討會(huì)論文摘要集[C];2010年
2 陳忱;李天勻;朱翔;陳浩森;;載流壓力管路振動(dòng)能量流的理論與試驗(yàn)研究[A];第十六屆中國海洋(岸)工程學(xué)術(shù)討論會(huì)論文集(上冊)[C];2013年
3 曾國華;孔建益;李公法;楊金堂;蔣國璋;熊禾根;;充液管道系統(tǒng)振動(dòng)能量流研究[A];12省區(qū)市機(jī)械工程學(xué)會(huì)2006年學(xué)術(shù)年會(huì)湖北省論文集[C];2006年
4 李公法;孔建益;幸福堂;王興東;劉懷廣;劉源l,
本文編號:1338014
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1338014.html