多功能稀土上轉(zhuǎn)換發(fā)光納米體系的制備及其生物成像和治療應(yīng)用研究
發(fā)布時(shí)間:2023-03-14 18:37
納米科學(xué)技術(shù)的進(jìn)步幫助人類(lèi)解決了很多個(gè)人和社會(huì)問(wèn)題。癌癥是嚴(yán)重的全球健康問(wèn)題之一,亟需找到有效的診斷和治療方法,如果早期不能對(duì)該疾病的診斷和治療進(jìn)行有效的控制,今后該疾病的新發(fā)病率可升至驚人的數(shù)字。目前,通過(guò)單一治療方式可能尚無(wú)法實(shí)現(xiàn)成功抗癌,因此,多模式療法和診斷的協(xié)同作用對(duì)于抗擊癌癥至關(guān)重要。而納米復(fù)合材料可以結(jié)合單個(gè)納米平臺(tái)各自的診斷、治療優(yōu)勢(shì),是未來(lái)解決癌癥早期診斷、治療及相關(guān)問(wèn)題的有效手段之一。因此,本論文成功構(gòu)建了兩種基于上轉(zhuǎn)換發(fā)光納米粒子的新型多功能稀土復(fù)合納米診斷-治療劑和一種近紅外光誘導(dǎo)可降解的銻納米材料,系統(tǒng)開(kāi)展了納米復(fù)合材料在生物成像和治療方面的應(yīng)用研究。具體包括以下幾方面:1、基于稀土上轉(zhuǎn)換發(fā)光納米粒子-黑磷納米片的納米復(fù)合物用于生物成像和光熱/光動(dòng)力協(xié)同治療我們成功合成了多功能的治療-診斷納米復(fù)合材料,并應(yīng)用于體外協(xié)同光熱/光動(dòng)力治療和雙模態(tài)成像(上轉(zhuǎn)換發(fā)光和磁共振成像)。首先,分別采用熱裂解和液相剝離法,合成核殼型上轉(zhuǎn)換發(fā)光納米粒子NaYF4:Yb,Er@NaGdF4(UCNP)和黑磷納米片(BPNS),然后將UC...
【文章頁(yè)數(shù)】:144 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
ABSTRACT
Chapter 1 Introduction and literature review
1.1 Back ground of the study
1.2 Objectives and motivation of the work
1.3 Literature review
1.3.1 Upconversion nanoparticles
ⅰ. Basic components of upconversion Nanoparticles (UCNPs)
ⅱ. Basic mechanisms of upconversion
1.3.2 Photodynamic therapy (PDT)
1.3.3 Photothermal therapy (PTT)
1.3.4 Black phosphorus as phototherapeutic agent
1.3.5 Antimony as photothermal agent
Chapter 2 Experimental methods and characterization technique
2.1 Chemicals, reagents and materials
2.2 Methods of synthesis
2.2.1 Synthesis of Upconversion nanoparticles (UCNPs)
2.2.2 Synthesis of black phosphorus nanosheets
2.2.3 Synthesis of Antimony nanoparticles based drug delivery system
2.2.4 Surface modification and conjugation
2.3 Characterization and measurement
2.3.1 Fluorescence spectrometer
2.3.2 Transmission Electron Microscopy (TEM)
Chapter 3 Nanocomposite from upconversion nanoparticles and black phosphorusnanosheets for bioimaging and therapy
3.1 Introduction
3.2 Experimental procedures
3.2.1 Synthesis of core and core- shell Upconversion nanoparticles
3.2.2 Synthesis of PAA modified Upconversion nanoparticles
3.2.3 Synthesis of black phosphorus nanosheet
3.2.4 Synthesis of PEG modified black phosphorus nanosheet (BPNS)
3.2.5 Combination of UCNP-PAA with BPNS-NH2(denoted as UCNP-BPNS)
3.2.6 Instruments and devices used for Characterizations
3.2.7 Laser-induced photothermal (PTT) effects
3.2.8 Singlet Oxygen Detection
3.2.9 In vitro cytotoxicity Assay
3.2.10 Live/dead staining of HeLa cells after exposure to UCNP-BPNS
3.2.11 Upconversion luminescence imaging in vitro
3.2.12 Magnetic resonance (MR) imaging
3.3 Result and discussion
3.3.1 Synthesis and characterizations of UCNP-BPNS
3.3.2 Photothermal therapy (PTT) effect
3.3.3 Photodynamic therapy (PDT) effect
3.3.4 Cytotoxicity In vitro
3.3.5 In vitro UCL imaging
3.3.6 T1-weighted magnetic resonance (MR) imaging
3.4 Summary
Chapter 4 Near-infrared laser induced degradable antimony nanoparticle baseddrug delivery system for synergistic chemo-photothermal therapy
4.1 Introduction
4.2 Experimental procedures
4.2.1 Synthesis of antimony nanoparticles (AMNP)
4.2.2 DOX loading
4.2.3 Synthesis of PAA modified AMNP-DOX (AMNP-DOX-PAA)
4.2.4 Instruments and devices used for Characterizations
4.2.5 Laser-induced Photothermal Therapy (PTT) of AMNP-DOX-PAA
4.2.6 DOX release of AMNP-DOX-PAA
4.2.7 In vitro cytotoxicity assay
4.2.8 Live/dead staining of HeLa cells after exposure to the samples
4.3 Computational Methodology used to investigate degradability of antimony
4.4 Result and discussion
4.4.1 Synthesis and characterizations of AMNP-DOX-PAA
4.4.2 Photothermal therapy (PTT) effect
4.4.3 Laser induced degradability of AMNP
4.4.4 Computational result about degradability of AMNP
4.4.5 DOX loading and release profile (Chemo-Therapy)
4.4.6 Cytotoxicity In vitro
4.5 Summery
Chapter 5 Core-shell nanostructure from rare-earth doped upconversionnanoparticle coated with antimony for dual-mode imaging-mediated photothermaltherapy
5.1 Introduction
5.2 Experimental section
5.2.1 Synthesis of Nd3+ sensitized UCNP(NaYF4:Yb,Er@NaYF4:Yb,Nd@NaGdF4:Nd)
5.2.2 Removing oleic acid from the surface of the UCNPs
5.2.3 Coating antimony nanoshell over the surface of the OA-free UCNPs
5.2.4 Surface modification of UCNP@Sb with DSPE-PEG
5.2.5 Instruments and devices used for characterizations
5.2.6 Photothermal conversion capability of UCNP@Sb-PEG resulting PTT effect
5.2.7 T1-weighted magnetic resonance (MR) imaging
5.3 Results and discussion
5.3.1 Characterization of the nanostructures
5.3.2 Photodegradability of antimony and recovery of UCL intensity of UCNP@Sb-PEG
5.3.3 Application of UCNP@Sb-PEG for PTT
5.3.4 UCNP@Sb-PEG as T1-weighted MR imaging contrast agent
5.4 Summery
Chapter 6 Conclusions and future perspective
6.1 Conclusions
6.2 Future perspectives
REFERENCES
AUTHOR PUBLICATIONS
AUTHOR PATENT
ACKNOWLEDGEMENTS
本文編號(hào):3762530
【文章頁(yè)數(shù)】:144 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
ABSTRACT
Chapter 1 Introduction and literature review
1.1 Back ground of the study
1.2 Objectives and motivation of the work
1.3 Literature review
1.3.1 Upconversion nanoparticles
ⅰ. Basic components of upconversion Nanoparticles (UCNPs)
ⅱ. Basic mechanisms of upconversion
1.3.2 Photodynamic therapy (PDT)
1.3.3 Photothermal therapy (PTT)
1.3.4 Black phosphorus as phototherapeutic agent
1.3.5 Antimony as photothermal agent
Chapter 2 Experimental methods and characterization technique
2.1 Chemicals, reagents and materials
2.2 Methods of synthesis
2.2.1 Synthesis of Upconversion nanoparticles (UCNPs)
2.2.2 Synthesis of black phosphorus nanosheets
2.2.3 Synthesis of Antimony nanoparticles based drug delivery system
2.2.4 Surface modification and conjugation
2.3 Characterization and measurement
2.3.1 Fluorescence spectrometer
2.3.2 Transmission Electron Microscopy (TEM)
Chapter 3 Nanocomposite from upconversion nanoparticles and black phosphorusnanosheets for bioimaging and therapy
3.1 Introduction
3.2 Experimental procedures
3.2.1 Synthesis of core and core- shell Upconversion nanoparticles
3.2.2 Synthesis of PAA modified Upconversion nanoparticles
3.2.3 Synthesis of black phosphorus nanosheet
3.2.4 Synthesis of PEG modified black phosphorus nanosheet (BPNS)
3.2.5 Combination of UCNP-PAA with BPNS-NH2(denoted as UCNP-BPNS)
3.2.6 Instruments and devices used for Characterizations
3.2.7 Laser-induced photothermal (PTT) effects
3.2.8 Singlet Oxygen Detection
3.2.9 In vitro cytotoxicity Assay
3.2.10 Live/dead staining of HeLa cells after exposure to UCNP-BPNS
3.2.11 Upconversion luminescence imaging in vitro
3.2.12 Magnetic resonance (MR) imaging
3.3 Result and discussion
3.3.1 Synthesis and characterizations of UCNP-BPNS
3.3.2 Photothermal therapy (PTT) effect
3.3.3 Photodynamic therapy (PDT) effect
3.3.4 Cytotoxicity In vitro
3.3.5 In vitro UCL imaging
3.3.6 T1-weighted magnetic resonance (MR) imaging
3.4 Summary
Chapter 4 Near-infrared laser induced degradable antimony nanoparticle baseddrug delivery system for synergistic chemo-photothermal therapy
4.1 Introduction
4.2 Experimental procedures
4.2.1 Synthesis of antimony nanoparticles (AMNP)
4.2.2 DOX loading
4.2.3 Synthesis of PAA modified AMNP-DOX (AMNP-DOX-PAA)
4.2.4 Instruments and devices used for Characterizations
4.2.5 Laser-induced Photothermal Therapy (PTT) of AMNP-DOX-PAA
4.2.6 DOX release of AMNP-DOX-PAA
4.2.7 In vitro cytotoxicity assay
4.2.8 Live/dead staining of HeLa cells after exposure to the samples
4.3 Computational Methodology used to investigate degradability of antimony
4.4 Result and discussion
4.4.1 Synthesis and characterizations of AMNP-DOX-PAA
4.4.2 Photothermal therapy (PTT) effect
4.4.3 Laser induced degradability of AMNP
4.4.4 Computational result about degradability of AMNP
4.4.5 DOX loading and release profile (Chemo-Therapy)
4.4.6 Cytotoxicity In vitro
4.5 Summery
Chapter 5 Core-shell nanostructure from rare-earth doped upconversionnanoparticle coated with antimony for dual-mode imaging-mediated photothermaltherapy
5.1 Introduction
5.2 Experimental section
5.2.1 Synthesis of Nd3+ sensitized UCNP(NaYF4:Yb,Er@NaYF4:Yb,Nd@NaGdF4:Nd)
5.2.2 Removing oleic acid from the surface of the UCNPs
5.2.3 Coating antimony nanoshell over the surface of the OA-free UCNPs
5.2.4 Surface modification of UCNP@Sb with DSPE-PEG
5.2.5 Instruments and devices used for characterizations
5.2.6 Photothermal conversion capability of UCNP@Sb-PEG resulting PTT effect
5.2.7 T1-weighted magnetic resonance (MR) imaging
5.3 Results and discussion
5.3.1 Characterization of the nanostructures
5.3.2 Photodegradability of antimony and recovery of UCL intensity of UCNP@Sb-PEG
5.3.3 Application of UCNP@Sb-PEG for PTT
5.3.4 UCNP@Sb-PEG as T1-weighted MR imaging contrast agent
5.4 Summery
Chapter 6 Conclusions and future perspective
6.1 Conclusions
6.2 Future perspectives
REFERENCES
AUTHOR PUBLICATIONS
AUTHOR PATENT
ACKNOWLEDGEMENTS
本文編號(hào):3762530
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/3762530.html
最近更新
教材專(zhuān)著