基于TOPSIS和改進(jìn)NSGA-Ⅱ法的攪拌摩擦工藝制備B 4 C/A356復(fù)合材料顯微組織和力學(xué)性能的混合多目標(biāo)優(yōu)化(英
發(fā)布時(shí)間:2023-03-05 14:55
采用攪拌摩擦工藝以A356合金為基體金屬制備B4C/A356復(fù)合材料。利用人工神經(jīng)網(wǎng)絡(luò)(ANN)和非支配排序遺傳算法-Ⅱ研究復(fù)合材料的顯微組織和力學(xué)性能。首先,研究不同加工條件下制得的復(fù)合材料的顯微組織。結(jié)果表明,攪拌摩擦工藝參數(shù)如攪拌頭的旋轉(zhuǎn)速度、橫向移動(dòng)速度和形狀顯著影響基體中初始Si顆粒的尺寸、復(fù)合材料層中B4C增強(qiáng)劑的分散效果及體積分?jǐn)?shù)。采用高旋轉(zhuǎn)/移動(dòng)速度比和螺紋銷形狀攪拌頭能獲得較好的顆粒分布、較細(xì)的Si顆粒和較少的B4C團(tuán)聚體。其次,通過硬度和拉伸試驗(yàn)研究復(fù)合材料的力學(xué)性能。結(jié)果顯示,經(jīng)攪拌摩擦工藝處理后樣品的斷裂機(jī)理由脆性斷裂轉(zhuǎn)變?yōu)檠有詳嗔。最?利用人工神經(jīng)網(wǎng)絡(luò)技術(shù)建立了攪拌摩擦工藝參數(shù)與復(fù)合材料顯微組織和力學(xué)性能的關(guān)系。采用結(jié)合多樣性保護(hù)機(jī)制的NSGA-Ⅱ法,即ε消除算法得到攪拌摩擦工藝參數(shù)的Pareto最優(yōu)解集。
【文章頁(yè)數(shù)】:17 頁(yè)
【文章目錄】:
1 Introduction
2 Experimental
2.1 Materials
2.2 Friction stir processing
2.3 Microstructure and hardness
2.4 Tensile measurements
2.5 Force acquisition
2.6 Composites preparation
3 Results and discussion
3.1 Microstructural properties
3.2 Axial force during FSP
3.3 Microhardness
3.4 Effects of process parameters on UTS
3.5 Establishment of models using ANN
3.6 Multi-objective optimization
3.6.1 Pareto optimization of rotational and traverse speeds
3.6.2 Best trade-off solutions using TOPSIS
4 Conclusions
本文編號(hào):3756403
【文章頁(yè)數(shù)】:17 頁(yè)
【文章目錄】:
1 Introduction
2 Experimental
2.1 Materials
2.2 Friction stir processing
2.3 Microstructure and hardness
2.4 Tensile measurements
2.5 Force acquisition
2.6 Composites preparation
3 Results and discussion
3.1 Microstructural properties
3.2 Axial force during FSP
3.3 Microhardness
3.4 Effects of process parameters on UTS
3.5 Establishment of models using ANN
3.6 Multi-objective optimization
3.6.1 Pareto optimization of rotational and traverse speeds
3.6.2 Best trade-off solutions using TOPSIS
4 Conclusions
本文編號(hào):3756403
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/3756403.html
最近更新
教材專著