rGO/SnO 2 /導(dǎo)電聚合物納米復(fù)合材料可控構(gòu)筑及水中幾種痕量重金屬離子檢測(cè)
發(fā)布時(shí)間:2023-01-15 17:15
眾所周知,重金屬離子Pb2+,Cd2+和Hg2+(HMIs)等離子因不能生物降解而直接在人體器官中富集,與含S,N和O的蛋白質(zhì)及各種酶發(fā)生強(qiáng)烈的相互作用形成復(fù)合物,最終破壞蛋白質(zhì)分子結(jié)構(gòu)、斷裂氫鍵、抑制酶的生成、改變DNA遺傳密碼,是致癌、致突變的劇毒物質(zhì)。即使少量暴露于生物圈也會(huì)對(duì)人類(lèi)健康和其他生物體造成嚴(yán)重?fù)p害。被世界衛(wèi)生組織(WHO)列為強(qiáng)污染物?梢哉f(shuō),現(xiàn)代社會(huì)對(duì)水質(zhì)的污染控制和水質(zhì)升級(jí)至關(guān)重要。因此,開(kāi)發(fā)低成本、有利、快速響應(yīng)的分析方法和敏感的納米結(jié)構(gòu)材料對(duì)于檢測(cè)生物圈中的HMIS具有重要意義。電化學(xué)傳感器是基于電活性物質(zhì)的檢測(cè),涉及化學(xué)識(shí)別過(guò)程及從固體或者液體樣品到達(dá)電極表面的電荷傳輸過(guò)程,識(shí)別作用是通過(guò)特殊配體與不同HMIs的不同交互作用力(如螯合作用、配位、范德華力、非共價(jià)鍵π-π作用等)來(lái)實(shí)現(xiàn)的。而無(wú)機(jī)、有機(jī)、生物等不同識(shí)別類(lèi)型敏感材料被用于識(shí)別選擇HMIs。無(wú)機(jī)材料納米粒子具有高效表面積,可以加快電化學(xué)活性種類(lèi)的擴(kuò)散,被廣泛的認(rèn)為是構(gòu)建電化學(xué)傳感器的理想材料:具有功能化生物相容性、化學(xué)穩(wěn)定性、催化等特...
【文章頁(yè)數(shù)】:167 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
Abstract
中文摘要
Chapter 1 Introduction
1.1 Research background
1.2 Methods used for the detection of heavy metal ions
1.3 Advantages and disadvantages of these methods
1.4 Graphene based electrochemical sensors
1.5 Characteristic, advantages and challenges of using graphene as a base material
1.6 Applications of r GO/metal oxide/ conducting polymers
1.7 Aims and objectives of the present study
Chapter 2 Experimental section
2.1 Chemical reagents and apparatus
2.1.1 Chemical reagents
2.1.2 Apparatus
2.2 Electrochemical behavior
2.3 Analysis and characterizations
2.4 Design strategies of graphene based electrochemical sensors
2.5 Characterization techniques
2.5.1 X-ray diffractometry (XRD)
2.5.2 Transmission electron microscopy (TEM)
2.5.3 Scanning electron microscopy (SEM)
2.5.4 X-ray photoelectron spectroscopy (XPS)
2.5.5 Fourier-transform infrared spectroscopy (FTIR)
2.5.6 Raman spectroscopy
2.5.7 Thermo gravimetric (TG) analysis
2.5.8 Gel permeation chromatography (GPC) analysis
2.5.9 Cyclic voltammetric (CV)
2.5.10 Electrochemical impedance spectrum (EIS)
2.5.11 Square Wave Anodic Stripping Voltammetry (SWASV)
Chapter 3 Synthesis of 3D interlayer nanohybrids composed of r GO/SnO_2/PPy used for the detection of heavy metals ions (Cd~(2+), Cu~(2+), Hg~(2+) and Pb~(2+))
3.1 Introduction
3.2 Material synthesis
3.2.0 Chemicals
3.2.1 Synthesis of reduced graphene oxide/SnO_2
3.2.2 Method for the preparation of polypyrrole
3.2.3 Synthesis of 3D interlayer nanohybrids composed of r GO/SnO_2/PPy
3.3 Analysis and characterizations of Materials
3.4 Results and discussion
3.4.1 Structural and characterization of 3D interlayer nanohybrids composed of r GO/SnO_2/PPy
3.4.2 Stripping Behavior of r GO/SnO_2 toward Cd~(2+), Cu~(2+), Hg~(2+) and Pb~(2+)
3.4.3 Stripping Behavior of r GO/SnO_2/PPy toward Cd~(2+), Cu~(2+), Hg~(2+) and Pb~(2+)
3.5 Discussion mechanism
3.6 Brief Summary
Chapter 4 The polyaniline functionalized r GO/SnO_2 nanocomposite for electrochemical detection of heavy metal ions Pb~(2+),Cd~(2+), Hg~(2+) and Cu~(2+)
4.1 Introduction
4.2 Material synthesis
4.2.1 Chemical Reagents
4.2.2 Method for the r GO/SnO_2/PAni, r GO/PAni and PAni
4.2.3 Preparation of the different samples of r GO/SnO_2/PAni nanocomposites
4.3 Analysis and characterizationsof Materials
4.4 Results and discussion
4.4.1 Structural and characterization of r GO/SnO_2/PAni
4.4.2 Electrochemical characterization of r GO/SnO_2/PAni nanocomposites
4.4.3 Stripping Behavior of r GO/SnO_2/PAni toward Cd~(2+), Cu~(2+), Hg~(2+) and Pb~(2+)
4.5 Discussion on mechanism
4.6 Brief Summary
Chapter 5 Controllable synthesis of porous PEI-functionalized Co_3O_4/rGO nanocomposite as electrochemical sensor for simultaneous as well as individual detection of heavy metalions
5.1 Introduction
5.2 Material synthesis
5.2.1 Chemicals
5.2.2 Method for the preparation of r GO/Co_3O_4/conducting polymers (PEI)
5.2.3 Characterization
5.3 Results and discussion
5.3.1 Characterization of porous r GO/Co_3O_4/PEI nanocomposite
5.3.2 The morphology of the r GO/Co_3O_4/PEI nanocomposite
5.3.3 The structure of the r GO/Co_3O_4/PEI nanocomposite
5.3.4 Electrochemical and other characteristic of the r GO and r GO/Co_3O_4/PEI nanocomposite
5.3.5 CV, EIS, TGA and MS of the r GO/Co_3O_4/PEI nanocomposite
5.3.6 SWV VS DNPV voltammetry analysis for the detection of (Cd~(2+), Pb~(2+), Cu~(2+) and Hg~(2+)) by using r GO/Co_3O_4/PEI nanocomposite modified electrode
5.3.7 Increased potential (V) effect on voltammetry spectrum
5.3.8 Stripping Behavior toward (Pb~(2+), Cd~(2+), Hg~(2+) and Cu~(2+))
5.3.9 Individual Stripping toward (Cd~(2+), Cu~(2+), Hg~(2+) and Pb~(2+)) using SWV
5.3.10 Sensitivity and LOD calculation the r GO/Co_3O_4/PEI nanocomposite
5.4 Brief Summary
Conclusion
結(jié)論
References
Acknowledgement
Papers published during Ph.D study
本文編號(hào):3731289
【文章頁(yè)數(shù)】:167 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
Abstract
中文摘要
Chapter 1 Introduction
1.1 Research background
1.2 Methods used for the detection of heavy metal ions
1.3 Advantages and disadvantages of these methods
1.4 Graphene based electrochemical sensors
1.5 Characteristic, advantages and challenges of using graphene as a base material
1.6 Applications of r GO/metal oxide/ conducting polymers
1.7 Aims and objectives of the present study
Chapter 2 Experimental section
2.1 Chemical reagents and apparatus
2.1.1 Chemical reagents
2.1.2 Apparatus
2.2 Electrochemical behavior
2.3 Analysis and characterizations
2.4 Design strategies of graphene based electrochemical sensors
2.5 Characterization techniques
2.5.1 X-ray diffractometry (XRD)
2.5.2 Transmission electron microscopy (TEM)
2.5.3 Scanning electron microscopy (SEM)
2.5.4 X-ray photoelectron spectroscopy (XPS)
2.5.5 Fourier-transform infrared spectroscopy (FTIR)
2.5.6 Raman spectroscopy
2.5.7 Thermo gravimetric (TG) analysis
2.5.8 Gel permeation chromatography (GPC) analysis
2.5.9 Cyclic voltammetric (CV)
2.5.10 Electrochemical impedance spectrum (EIS)
2.5.11 Square Wave Anodic Stripping Voltammetry (SWASV)
Chapter 3 Synthesis of 3D interlayer nanohybrids composed of r GO/SnO_2/PPy used for the detection of heavy metals ions (Cd~(2+), Cu~(2+), Hg~(2+) and Pb~(2+))
3.1 Introduction
3.2 Material synthesis
3.2.0 Chemicals
3.2.1 Synthesis of reduced graphene oxide/SnO_2
3.2.2 Method for the preparation of polypyrrole
3.2.3 Synthesis of 3D interlayer nanohybrids composed of r GO/SnO_2/PPy
3.3 Analysis and characterizations of Materials
3.4 Results and discussion
3.4.1 Structural and characterization of 3D interlayer nanohybrids composed of r GO/SnO_2/PPy
3.4.2 Stripping Behavior of r GO/SnO_2 toward Cd~(2+), Cu~(2+), Hg~(2+) and Pb~(2+)
3.4.3 Stripping Behavior of r GO/SnO_2/PPy toward Cd~(2+), Cu~(2+), Hg~(2+) and Pb~(2+)
3.5 Discussion mechanism
3.6 Brief Summary
Chapter 4 The polyaniline functionalized r GO/SnO_2 nanocomposite for electrochemical detection of heavy metal ions Pb~(2+),Cd~(2+), Hg~(2+) and Cu~(2+)
4.1 Introduction
4.2 Material synthesis
4.2.1 Chemical Reagents
4.2.2 Method for the r GO/SnO_2/PAni, r GO/PAni and PAni
4.2.3 Preparation of the different samples of r GO/SnO_2/PAni nanocomposites
4.3 Analysis and characterizationsof Materials
4.4 Results and discussion
4.4.1 Structural and characterization of r GO/SnO_2/PAni
4.4.2 Electrochemical characterization of r GO/SnO_2/PAni nanocomposites
4.4.3 Stripping Behavior of r GO/SnO_2/PAni toward Cd~(2+), Cu~(2+), Hg~(2+) and Pb~(2+)
4.5 Discussion on mechanism
4.6 Brief Summary
Chapter 5 Controllable synthesis of porous PEI-functionalized Co_3O_4/rGO nanocomposite as electrochemical sensor for simultaneous as well as individual detection of heavy metalions
5.1 Introduction
5.2 Material synthesis
5.2.1 Chemicals
5.2.2 Method for the preparation of r GO/Co_3O_4/conducting polymers (PEI)
5.2.3 Characterization
5.3 Results and discussion
5.3.1 Characterization of porous r GO/Co_3O_4/PEI nanocomposite
5.3.2 The morphology of the r GO/Co_3O_4/PEI nanocomposite
5.3.3 The structure of the r GO/Co_3O_4/PEI nanocomposite
5.3.4 Electrochemical and other characteristic of the r GO and r GO/Co_3O_4/PEI nanocomposite
5.3.5 CV, EIS, TGA and MS of the r GO/Co_3O_4/PEI nanocomposite
5.3.6 SWV VS DNPV voltammetry analysis for the detection of (Cd~(2+), Pb~(2+), Cu~(2+) and Hg~(2+)) by using r GO/Co_3O_4/PEI nanocomposite modified electrode
5.3.7 Increased potential (V) effect on voltammetry spectrum
5.3.8 Stripping Behavior toward (Pb~(2+), Cd~(2+), Hg~(2+) and Cu~(2+))
5.3.9 Individual Stripping toward (Cd~(2+), Cu~(2+), Hg~(2+) and Pb~(2+)) using SWV
5.3.10 Sensitivity and LOD calculation the r GO/Co_3O_4/PEI nanocomposite
5.4 Brief Summary
Conclusion
結(jié)論
References
Acknowledgement
Papers published during Ph.D study
本文編號(hào):3731289
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/3731289.html
最近更新
教材專(zhuān)著