多孔材料和光子晶體在太陽能裝置中的熱-光輻射特性
發(fā)布時間:2021-05-10 19:29
如今,在科學研究和工業(yè)生產(chǎn)中急需開發(fā)廉價能源裝置的新方法。多孔材料因其卓越的機械,熱和電絕緣性能而被廣泛的應用于的光熱系統(tǒng)中,以解決能源問題。受此啟發(fā),本文研究了孔隙率對太陽能系統(tǒng)中多孔材料和光子晶體(PhCs)的光學和熱輻射特性的影響,為精確的預測光學特性以及提高傳熱特性提供看一種新的設(shè)計方法。本文通過在“Matlab”軟件中使用傳遞矩陣方法(TMM)和“Lumerical FDTD Solutions”中使用有限時間域有限差分(FDTD)法進行數(shù)值模擬,對通過多孔材料PhCs的光輻射特性進行了廣泛研究。本文還研究了在相同尺寸下具有不同介電常數(shù)的多孔硅/多孔氧化鋁(p-Si/p-Al2O3)的PhCs在近紅外一維透射特性和效率,以及在正入射下800-2200nm波長范圍內(nèi)孔隙率對該結(jié)構(gòu)的透射特性影響,且結(jié)果與文獻一致。結(jié)果表明,該結(jié)構(gòu)孔隙率的增加對應的有效折射率下降,傳輸通帶的寬度減少,阻帶的外觀更加明顯。同時隨著單元晶胞的增加,傳輸阻帶產(chǎn)生得更加明顯。由此可通過控制該材料的孔隙率,增強通過多孔材料PhCs的透射特性。同時本文利用FDTD模擬了由周期性pSi材料中的圓形氣孔組成PhC...
【文章來源】:哈爾濱工業(yè)大學黑龍江省 211工程院校 985工程院校
【文章頁數(shù)】:216 頁
【學位級別】:博士
【文章目錄】:
摘要
Abstract
Nomenclature
Chapter 1 Introduction
1.1 Background
1.2 Introduction to porous materials
1.2.1 Properties of porous materials
1.2.2 Macroporous materials
1.2.3 Mesoporous materials
1.2.4 Microporous materials
1.2.5 Polymers nanoporous materials
1.2.6 Natural and artificial porous materials
1.3 Basic factors affecting porous materials
1.3.1 Porosity
1.3.2 Pore size
1.3.3 Pore morphology
1.3.4 Specific surface area
1.4 Research progress on porous materials in solar energy systems
1.5 Thesis scope
1.6 Research content
1.7 Thesis organization
Chapter 2 Principles of photonic crystals and computational methods
2.1 Introduction
2.2 Configuration of photonic crystals
2.2.1 One dimensional photonic crystals
2.2.2 Two dimensional photonic crystals
2.2.3 Three dimensional photonic crystals
2.3 Characterization of photonic band gap
2.3.1 Dispersion Relation
2.3.2 Ideal case of reflectance and transmittance spectrum
2.4 Photonic band calculations
2.4.1 Maxwell's equations
2.4.2 Floquet–Bloch theorem,reciprocal lattice, and Brillouin zones
2.5 Plane wave expansion method
2.6 Finite-difference time-domain method
2.6.1 Maxwell's equations discretization
2.6.2 Dielectric function
2.6.3 Initial and boundary conditions
2.6.4 FDTD method stability
2.7 Transfer matrix method
2.7.1 Formulation of the TMM for isotropic structures
2.7.2 Extension of the method for anisotropic components structures
2.8 Summary
Chapter 3 Optical Characteristics through porous materials based photonic crystals
3.1 Introduction
3.2 Near-infrared transmission spectra of porous Si/Al2O3 PhC
3.2.1 Physical structure
3.2.2 Effective refraction index versus porosity (Bruggeman model)
3.2.3 Numerical TMM for multilayer 1D PhC
3.2.4 Discussion
3.3 Limitation of optical properties in pSi photonic crystals
3.3.1 Physical model
3.3.2 Lumerical FDTD solutions and boundary conditions
3.3.3 Physical structure and simulation setup
3.3.4 Discussion
3.4 Optical characteristics of metallo-dielectric nanostructure
3.4.1 Physical model
3.4.2 Visible region optical spectra of composite Ag-pSi dielectric film
3.4.3 Near-infrared optical spectra of composite Ag-pSi dielectric film
3.5 Summary
Chapter 4 Thermal radiation in porous materials based photonic crystals
4.1 Introduction
4.2 Theoretical tools of photonic density of states
4.3 Spectral energy density versus DOS in statistical physics approach
4.4 Spectral energy density on the basis of porous Si PhCs
4.4.1 Conjugate PWE & Fourier expansion method
4.4.2 Discussion of SED in porous Si PhCs
4.5 Thermodynamic properties in porous Si photonic crystals
4.5.1 Thermodynamic concepts as function of DOS in thermal radiation field
4.5.2 Discussion of thermodynamic properties in porous Si PhCs
4.6 Summary
Chapter 5 Heat transfer characteristics in biphasic system porous materials
5.1 Introduction
5.2 Physical modeling of biphasic porous materials
5.3 Energy equation for transient conduction in biphasic system
5.4 Thermal lattice Boltzmann method (TLBM)
5.4.1 Lattices and the Dn Qm models
5.4.2 Numerical principle of 2D lattice Boltzmann method
5.5 D2Q9-LBM for heat conduction in biphasic system
5.5.1 Discretization of LBM & BGK approximation
5.5.2 Boundary conditions treatment
5.6 Analytical modeling of ETC of biphasic porous materials
5.7 Normalization of ETC in biphasic porous materials
5.8 Discussion
5.9 Summary
Chapter 6 Conclusions and recommendations for future research
6.1 Conclusion
6.2 Author's contribution
6.3 Future work
References
List of Publications
Acknowledgements
Resume
【參考文獻】:
期刊論文
[1]Techniques for the Preparation of Porous Metals[J]. Peisheng LIU1,2), Bing YU2), Anmin HU2), Kaiming LIANG2) and Shouren GU21)The Key Laboratory of Beam Technology and Material Modification of Ministry of Education & Dept. of Materials Science and Engineering, Beijing Normal University, Beijing 100875, Chi. Journal of Materials Science & Technology. 2002(04)
[2]泡沫陶瓷制備工藝的探討[J]. 任雪潭,曾令可,王慧. 材料科學與工程. 2001(01)
本文編號:3179927
【文章來源】:哈爾濱工業(yè)大學黑龍江省 211工程院校 985工程院校
【文章頁數(shù)】:216 頁
【學位級別】:博士
【文章目錄】:
摘要
Abstract
Nomenclature
Chapter 1 Introduction
1.1 Background
1.2 Introduction to porous materials
1.2.1 Properties of porous materials
1.2.2 Macroporous materials
1.2.3 Mesoporous materials
1.2.4 Microporous materials
1.2.5 Polymers nanoporous materials
1.2.6 Natural and artificial porous materials
1.3 Basic factors affecting porous materials
1.3.1 Porosity
1.3.2 Pore size
1.3.3 Pore morphology
1.3.4 Specific surface area
1.4 Research progress on porous materials in solar energy systems
1.5 Thesis scope
1.6 Research content
1.7 Thesis organization
Chapter 2 Principles of photonic crystals and computational methods
2.1 Introduction
2.2 Configuration of photonic crystals
2.2.1 One dimensional photonic crystals
2.2.2 Two dimensional photonic crystals
2.2.3 Three dimensional photonic crystals
2.3 Characterization of photonic band gap
2.3.1 Dispersion Relation
2.3.2 Ideal case of reflectance and transmittance spectrum
2.4 Photonic band calculations
2.4.1 Maxwell's equations
2.4.2 Floquet–Bloch theorem,reciprocal lattice, and Brillouin zones
2.5 Plane wave expansion method
2.6 Finite-difference time-domain method
2.6.1 Maxwell's equations discretization
2.6.2 Dielectric function
2.6.3 Initial and boundary conditions
2.6.4 FDTD method stability
2.7 Transfer matrix method
2.7.1 Formulation of the TMM for isotropic structures
2.7.2 Extension of the method for anisotropic components structures
2.8 Summary
Chapter 3 Optical Characteristics through porous materials based photonic crystals
3.1 Introduction
3.2 Near-infrared transmission spectra of porous Si/Al2O3 PhC
3.2.1 Physical structure
3.2.2 Effective refraction index versus porosity (Bruggeman model)
3.2.3 Numerical TMM for multilayer 1D PhC
3.2.4 Discussion
3.3 Limitation of optical properties in pSi photonic crystals
3.3.1 Physical model
3.3.2 Lumerical FDTD solutions and boundary conditions
3.3.3 Physical structure and simulation setup
3.3.4 Discussion
3.4 Optical characteristics of metallo-dielectric nanostructure
3.4.1 Physical model
3.4.2 Visible region optical spectra of composite Ag-pSi dielectric film
3.4.3 Near-infrared optical spectra of composite Ag-pSi dielectric film
3.5 Summary
Chapter 4 Thermal radiation in porous materials based photonic crystals
4.1 Introduction
4.2 Theoretical tools of photonic density of states
4.3 Spectral energy density versus DOS in statistical physics approach
4.4 Spectral energy density on the basis of porous Si PhCs
4.4.1 Conjugate PWE & Fourier expansion method
4.4.2 Discussion of SED in porous Si PhCs
4.5 Thermodynamic properties in porous Si photonic crystals
4.5.1 Thermodynamic concepts as function of DOS in thermal radiation field
4.5.2 Discussion of thermodynamic properties in porous Si PhCs
4.6 Summary
Chapter 5 Heat transfer characteristics in biphasic system porous materials
5.1 Introduction
5.2 Physical modeling of biphasic porous materials
5.3 Energy equation for transient conduction in biphasic system
5.4 Thermal lattice Boltzmann method (TLBM)
5.4.1 Lattices and the Dn Qm models
5.4.2 Numerical principle of 2D lattice Boltzmann method
5.5 D2Q9-LBM for heat conduction in biphasic system
5.5.1 Discretization of LBM & BGK approximation
5.5.2 Boundary conditions treatment
5.6 Analytical modeling of ETC of biphasic porous materials
5.7 Normalization of ETC in biphasic porous materials
5.8 Discussion
5.9 Summary
Chapter 6 Conclusions and recommendations for future research
6.1 Conclusion
6.2 Author's contribution
6.3 Future work
References
List of Publications
Acknowledgements
Resume
【參考文獻】:
期刊論文
[1]Techniques for the Preparation of Porous Metals[J]. Peisheng LIU1,2), Bing YU2), Anmin HU2), Kaiming LIANG2) and Shouren GU21)The Key Laboratory of Beam Technology and Material Modification of Ministry of Education & Dept. of Materials Science and Engineering, Beijing Normal University, Beijing 100875, Chi. Journal of Materials Science & Technology. 2002(04)
[2]泡沫陶瓷制備工藝的探討[J]. 任雪潭,曾令可,王慧. 材料科學與工程. 2001(01)
本文編號:3179927
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/3179927.html
最近更新
教材專著