PIPD纖維表面改性及其復(fù)合材料界面性能研究
發(fā)布時間:2021-04-23 16:50
PIPD或M5纖維是具有高拉伸強度的纖維材料,具有如能量吸收等優(yōu)越的性能,可以應(yīng)用到對重量要求較高的領(lǐng)域。PIPD纖維具有突出的壓縮性能,使其在結(jié)構(gòu)方面的應(yīng)用可擴展到宇航、航海、汽車和制造工業(yè)等諸多領(lǐng)域。然而,PIPD纖維光滑而惰性的表面導(dǎo)致纖維與基體的界面粘接作用較弱。因此,研究人員提出大量的表面改性方法克服這一缺點,從而提高復(fù)合材料的界面和力學(xué)性能。在本項工作中,提出了一種非劇烈條件下在PIPD纖維表面接枝有機/無機納米材料的方法,在大幅提高界面與力學(xué)性能的同時保持了PIPD纖維原有的拉伸強度。將PIPD表面硝酸化處理后引入了多壁碳納米管,并研究了酸化處理和接枝方法對纖維性能的影響。對在不同濃度、時間、溫度下酸化處理的纖維強度作出評價,獲得了不損傷纖維的最佳表面處理條件。進一步,接枝多壁碳納米管增加了纖維與樹脂的接觸面積和機械嚙合,將PIPD/環(huán)氧的界面剪切強度從25.13MPa提高到40.63MPa,提高了62%。接枝多壁碳納米管后的纖維表面能從34.23 mJ/m2提高到52.04 mJ/m2,提高了52%。同時,將拉伸強度的損失控制...
【文章來源】:哈爾濱工業(yè)大學(xué)黑龍江省 211工程院校 985工程院校
【文章頁數(shù)】:153 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Background, objective and significance of the subject
1.2 Progress in high performance rigid rod fibers
1.2.1 Structure and properties of PBO fiber
1.2.2 Structure and properties of PIPD fiber
1.2.3 The properties of high performance fibers
1.3 The Compressive property of high performance fiber
1.3.1 The compressive behavior of high performance fiber
1.3.2 The intermolecular structure vs compressive property of PIPD fiber
1.4 Progress in surface modification methods of high performance fibers
1.4.1 Surface modification by changing surface chemically
1.4.2 Surface modification by adding new material onto the surface
1.4.3 Other surface modification methods
1.5 Bond Failure Modes
1.5.1 Definition of Failure Modes
1.5.2 Failure Modes mechanisms
1.6 Main research content
Chapter 2 Experimental Materials and Methods
2.1 Experimental materials and instruments
2.1.1 Experimental material
2.1.2 Experimental instruments#.
2.2 Surface modification methods of PIPD fiber
2.2.1 Surface modification of PIPD fiber using Nitric acid
2.2.2 Preparation of PIPD fiber grafted MWCNTs
2.2.3 Preparation of PIPD fiber grafted MXene nanosheets
2.2.4 Preparation of PIPD fiber coated CuO NWs decorated with Ag NPs
2.3 Surface structure and characterization performance of experimentalmaterials
2.3.1 Morphological analysis
2.3.2 Surface composition analysis
2.3.3 Structural analysis
2.3.4 Characterization performance of PIPD fiber
2.3.5 Characterization performance of PIPD/epoxy resin composite
Chapter 3 Surface modification of PIPD fibers by grafting MWCNTs
3.1 Introduction
3.2 Surface morphology of the acid treated PIPD fibers
3.3 Surface roughness of acid treatment PIPD fibers
3.4 X-ray photoelectron microscopy of acid treatment PIPD fibers
3.5 Mechanical properties of acid treated PIPD fibers
3.6 Surface energy and wettability of acid treated PIPD fibers
3.7 Surface composition of MWCNTs
3.7.1 X-ray photoelectron microscopy of MWCNTs
3.7.2 Infrared spectroscopy analysis of MWCNTs
3.7.3 Thermogravimetric analysis (TGA) of MWCNTs
3.8 Surface morphology of PIPD fibers grafted MWCNTs
3.9 Surface composition analysis of PIPD fibers grafted MWCNTs
3.9.1 X-ray photoelectron microscopy of PIPD fibers grafted MWCNTs
3.9.2 Infrared spectroscopy analysis of PIPD fibers grafted MWCNTs
3.10 Mechanical properties of PIPD fibers grafted MWCNTs
3.11 Surface energy of PIPD fibers grafted MWCNTs
3.12 Thermogravimetric analysis of PIPD fibers grafted MWCNTs
3.13 Brief summary
3C2(OH)2 nanosheets onto PIPD fiber">Chapter 4 Surface grafting of Ti3C2(OH)2 nanosheets onto PIPD fiber
4.1 Introduction
4.2 Characterization of MXene nanosheets
4.2.1 Surface morphology of MXene nanosheets
4.2.2 The X-ray diffraction (XRD) of MXene nanosheets
4.2.3 The XPS analysis of MXene nanosheets
3C2(OH)2"> 4.3 The effect of grafting on the interfacial properties of PIPD - Ti3C2(OH)2
4.3.1 Surface morphology analysis of the PIPD grafted Ti3C2(OH)2
4.3.2 Surface composition analysis of PIPD grafted Ti3C2 (OH)2
4.3.3 The FT-IR analysis of PIPD grafted Ti3C2(OH)2
4.3.4 Surface energy analysis of PIPD grafted Ti3C2(OH)2
4.4 Mechanical properties of PIPD grafted Ti3C2(OH)2
4.5 Ultra-violet resistance
4.6 Hydrothermal aging resistance analysis
4.7 Brief summary
Chapter 5 Surface modification of PIPD fiber using CuO nanowires decorated with silver nanoparticles
5.1 Introduction#.
5.2 Surface morphology analysis of PIPD-CuO NWs-Ag NPs
5.3 X-Ray Diffraction analysis of PIPD-CuO NPs-Ag NPs
5.4 Chemical composition analysis of PIPD-CuO NWs-Ag NPs
5.4.1 Surface element composition analysis of PIPD-CuO NWs-Ag NP
5.4.2 The FT-IR analysis of PIPD-CuO NWs-Ag NPs
5.5 Surface tension of PIPD samples
5.6 Mechanical performance of PIPD-CuO NWs-Ag NPs
5.7 Thermogravimetric analysis (TGA) analysis
5.8 Ultra-violet degradation analysis of PIPD-CuO NWs-Ag NPs
5.9 Hydrothermal resistance analysis
5.10 Antibacterial activities analysis
5.11 Brief summary
Conclusions
The innovation of this thesis:
Perspectives
References
List of Publications
Acknowledgements
Resume
【參考文獻】:
期刊論文
[1]Synthesis and characterization of ZnO–CuO nanocomposites powder by modified perfume spray pyrolysis method and its antimicrobial investigation[J]. D.Saravanakkumar,S.Sivaranjani,K.Kaviyarasu,A.Ayeshamariam,B.Ravikumar,S.Pandiarajan,C.Veeralakshmi,M.Jayachandran,M.Maaza. Journal of Semiconductors. 2018(03)
本文編號:3155684
【文章來源】:哈爾濱工業(yè)大學(xué)黑龍江省 211工程院校 985工程院校
【文章頁數(shù)】:153 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Background, objective and significance of the subject
1.2 Progress in high performance rigid rod fibers
1.2.1 Structure and properties of PBO fiber
1.2.2 Structure and properties of PIPD fiber
1.2.3 The properties of high performance fibers
1.3 The Compressive property of high performance fiber
1.3.1 The compressive behavior of high performance fiber
1.3.2 The intermolecular structure vs compressive property of PIPD fiber
1.4 Progress in surface modification methods of high performance fibers
1.4.1 Surface modification by changing surface chemically
1.4.2 Surface modification by adding new material onto the surface
1.4.3 Other surface modification methods
1.5 Bond Failure Modes
1.5.1 Definition of Failure Modes
1.5.2 Failure Modes mechanisms
1.6 Main research content
Chapter 2 Experimental Materials and Methods
2.1 Experimental materials and instruments
2.1.1 Experimental material
2.1.2 Experimental instruments#.
2.2 Surface modification methods of PIPD fiber
2.2.1 Surface modification of PIPD fiber using Nitric acid
2.2.2 Preparation of PIPD fiber grafted MWCNTs
2.2.3 Preparation of PIPD fiber grafted MXene nanosheets
2.2.4 Preparation of PIPD fiber coated CuO NWs decorated with Ag NPs
2.3 Surface structure and characterization performance of experimentalmaterials
2.3.1 Morphological analysis
2.3.2 Surface composition analysis
2.3.3 Structural analysis
2.3.4 Characterization performance of PIPD fiber
2.3.5 Characterization performance of PIPD/epoxy resin composite
Chapter 3 Surface modification of PIPD fibers by grafting MWCNTs
3.1 Introduction
3.2 Surface morphology of the acid treated PIPD fibers
3.3 Surface roughness of acid treatment PIPD fibers
3.4 X-ray photoelectron microscopy of acid treatment PIPD fibers
3.5 Mechanical properties of acid treated PIPD fibers
3.6 Surface energy and wettability of acid treated PIPD fibers
3.7 Surface composition of MWCNTs
3.7.1 X-ray photoelectron microscopy of MWCNTs
3.7.2 Infrared spectroscopy analysis of MWCNTs
3.7.3 Thermogravimetric analysis (TGA) of MWCNTs
3.8 Surface morphology of PIPD fibers grafted MWCNTs
3.9 Surface composition analysis of PIPD fibers grafted MWCNTs
3.9.1 X-ray photoelectron microscopy of PIPD fibers grafted MWCNTs
3.9.2 Infrared spectroscopy analysis of PIPD fibers grafted MWCNTs
3.10 Mechanical properties of PIPD fibers grafted MWCNTs
3.11 Surface energy of PIPD fibers grafted MWCNTs
3.12 Thermogravimetric analysis of PIPD fibers grafted MWCNTs
3.13 Brief summary
3C2(OH)2 nanosheets onto PIPD fiber">Chapter 4 Surface grafting of Ti3C2(OH)2 nanosheets onto PIPD fiber
4.1 Introduction
4.2 Characterization of MXene nanosheets
4.2.1 Surface morphology of MXene nanosheets
4.2.2 The X-ray diffraction (XRD) of MXene nanosheets
4.2.3 The XPS analysis of MXene nanosheets
3C2(OH)2"> 4.3 The effect of grafting on the interfacial properties of PIPD - Ti3C2(OH)2
4.6 Hydrothermal aging resistance analysis
4.7 Brief summary
Chapter 5 Surface modification of PIPD fiber using CuO nanowires decorated with silver nanoparticles
5.1 Introduction#.
5.2 Surface morphology analysis of PIPD-CuO NWs-Ag NPs
5.3 X-Ray Diffraction analysis of PIPD-CuO NPs-Ag NPs
5.4 Chemical composition analysis of PIPD-CuO NWs-Ag NPs
5.4.1 Surface element composition analysis of PIPD-CuO NWs-Ag NP
5.4.2 The FT-IR analysis of PIPD-CuO NWs-Ag NPs
5.5 Surface tension of PIPD samples
5.6 Mechanical performance of PIPD-CuO NWs-Ag NPs
5.7 Thermogravimetric analysis (TGA) analysis
5.8 Ultra-violet degradation analysis of PIPD-CuO NWs-Ag NPs
5.9 Hydrothermal resistance analysis
5.10 Antibacterial activities analysis
5.11 Brief summary
Conclusions
The innovation of this thesis:
Perspectives
References
List of Publications
Acknowledgements
Resume
【參考文獻】:
期刊論文
[1]Synthesis and characterization of ZnO–CuO nanocomposites powder by modified perfume spray pyrolysis method and its antimicrobial investigation[J]. D.Saravanakkumar,S.Sivaranjani,K.Kaviyarasu,A.Ayeshamariam,B.Ravikumar,S.Pandiarajan,C.Veeralakshmi,M.Jayachandran,M.Maaza. Journal of Semiconductors. 2018(03)
本文編號:3155684
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/3155684.html
最近更新
教材專著