基于Al-SiO 2 和Al-SiO 2 -C制備的鋁基復合材料微觀組織與力學性能
發(fā)布時間:2021-04-23 10:03
本文以Al粉,Si O2粉和C粉為原料,制備Al2O3,Si C和Si為增強相的鋁基復合材料。同時研究了Al-Si O2和Al-Si O2-C兩種體系,采用球磨和反應熱壓法制備鋁基復合材料。用低能球磨原料粉,然后在真空熱壓爐中燒結以合成新的增強相。對于Al-Si O2體系,分別用低能球磨和反應熱壓法合成了增強相體積分數為10,20和30%的復合材料。研究了增強相體積分數對微觀組織和力學性能的影響。當體積分數為10vol.%和20vol.%時,微觀組織觀察表明原位反應生成的Al2O3和Si均勻分布在鋁基體上,并且增強相尺寸細小,小于2μm。而當增強相的體積分數為30vol.%時,可以觀察到Al2O3尺寸達到2μm和塊狀初晶硅((130μm)。利用DTA研究Al-SiO2和Al-Si O2-C兩種體系的反應機制。加熱到900oC保溫1小時,足以使Al和Al O2發(fā)生完全反應,生成Al2O3和Si。然而,將C加入到AlSi O2體系中,反應產物除了Al2O3和Si,還有Al4C3和Si C生成。原位反應生成的Al2O3,Si C,Al4C3和Si均勻分布于鋁基體上,尺寸...
【文章來源】:哈爾濱工業(yè)大學黑龍江省 211工程院校 985工程院校
【文章頁數】:136 頁
【學位級別】:博士
【文章目錄】:
摘要
ABSTRACT
CHAPTER 1 INTRODUCTION
1.1 BACKGROUND AND SIGNIFICANCE OF SUBJECT
1.2 METAL MATRIX COMPOSITES OVERVIEW
1.2.1 Classification of MMCs
1.2.2 Particle reinforced AMCs
1.2.3 Applications of particle reinforced AMCs
1.2.4 Advantages and limitations of particle reinforced AMCs
1.2.5 Notion of Hybrid in particle reinforced AMCs
1.3 UNWANTED CHEMICAL REACTIONS IN AMCS
1.4 MAIN FABRICATION METHODS FOR MMC
1.4.1 In situ techniques
2O3, SiC AND Si"> 1.5 MECHANICAL PROPERTIES OF AMCS REINFORCED WITH Al2O3, SiC AND Si
1.6 PURE ALUMINUM AND Al-Si ALLOYS
1.7 THEORY OF WEAR
1.7.1 Abrasive wear
1.7.2 Adhesive wear
1.7.3 Erosive wear
1.7.4 Surface fatigue wear
1.7.5 Corrosive wear
1.8 PARAMETERS INFLUENCES THE FRICTION AND WEAR MECHANISMS
1.9 WEAR BEHAVIOR OF AMCS
1.10 LAYOUT OF THESIS
CHAPTER 2 MATERIAL SYSTEM AND EXPERIMENTAL DETAILS
2.1 RAW MATERIALS
2.2 PROCESSING METHODS
2.2.1 Ball milling
2.2.2 Reactive hot pressing
2.2.3 Hot extrusion process
2.3 MICROSTRUCTURAL CHARACTERIZATION
2.3.1 Differential thermal analysis
2.3.2 Microstructural analysis
2.3.3 X-ray diffraction
2.3.4 Atomic Force Microscopy
2.4 MECHANICAL TESTING
2.4.1 Brinell hardness
2.4.2 Room temperature tensile tests
2.4.3 Dry sliding wear tests
2.4.4 Relative density measurement
4C3 PREVENTION">CHAPTER 3 REACTION MECHANISM, PROCESS OPTIMIZATION AND AL4C3 PREVENTION
3.1 INTRODUCTION
3.2 OPTIMIZATION OF BALL MILLING PARAMETERS
3.3 THERMODYNAMIC CONSIDERATIONS AND DIFFERENTIAL THERMAL ANALYSIS (DTA)
3.3.1 Thermodynamic analysis of the Al-Si O2 system
3.3.2 Thermodynamic analysis of the Al-Si O2-C system
3.3.3 Reaction Energy activation
3.4 OPTIMIZATION OF SINTERING PARAMETERS
3.4.1 XRD and microstructures in Al-Si O2 system
2-Al-C system"> 3.4.2 XRD and Microstructures in SiO2-Al-C system
3.5 EFFECT OF THE SYNTHESIS TEMPERATURE IN PREVENTING AL4C3
3.6 SUMMARY
2O3-Si)/Al AND (Al2O3-SiC-Si)/Al MMCS">CHAPTER 4 FABRICATION OF (Al2O3-Si)/Al AND (Al2O3-SiC-Si)/Al MMCS
4.1 INTRODUCTION
4.2 FABRICATION TECHNOLOGY
4.2.1 XRD and micro structural observations
4.2.2 Effect of pressure
2O3-SI)/AL MMCS"> 4.3 EFFECT OF REINFORCEMENT VOLUME FRACTION ON MICROSTRUCTURE OF (Al2O3-SI)/AL MMCS
4C3"> 4.4 EFFECT OF VARYING SiO2/C/AL MOLAR RATIO IN PREVENTING Al4C3
4.5 HOT EXTRUSION OF (Al2O3-Si)/AL MMCS
4.5.1 Fabrication technology
2 O3-Si)/Al MMCs"> 4.5.2 Microstructural analysis of as extruded (Al2O3-Si)/Al MMCs
4.6 SUMMARY
CHAPTER 5 MECHANICAL CHARACTERIZATION OF IN SITU AL BASED COMPOSITES
5.1 INTRODUCTION
2 SYSTEM"> 5.2 MECHANICAL PROPERTIES OF AS SINTERED COMPOSITES FABRICATED IN Al-SiO2 SYSTEM
5.2.1 Brinell hardness of as sintered composites
5.2.2 Room tensile properties of as sintered composites
5.2.3 Fracture surfaces of as sintered composites
2-C SYSTEM"> 5.3 MECHANICAL PROPERTIES OF AS SINTERED COMPOSITES FABRICATED IN AL-SiO2-C SYSTEM
5.3.1 Brinell hardness of as sintered composites
2-C system"> 5.3.2 Room tensile properties of as sintered composites fabricated in Al-SiO2-C system
5.3.3 Fracture surfaces of as sintered composites
2 SYSTEM"> 5.4 MECHANICAL PROPERTIES OF AS EXTRUDED COMPOSITES FABRICATED IN AL-SiO2 SYSTEM
5.4.1 Brinell hardness of as extruded composites
5.4.2 Room tensile properties of as extruded composites
5.4.3 Fracture surfaces of as extruded composites
5.5 SUMMARY
CHAPTER 6 WEAR CHARACTERISTICS AND FRICTION BEHAVIOR OF AL BASED COMPOSITES
6.1 INTRODUCTION
2O3-SI)/AL COMPOSITES"> 6.2 WEAR CHARACTERISTICS AND FRICTION BEHAVIOR OF (Al2O3-SI)/AL COMPOSITES
2O3-Si)/Al composites"> 6.2.1 Wear characteristics of as sintered (Al2O3-Si)/Al composites
2O3-Si)/Al composites"> 6.2.2 Wear surfaces of as sintered (Al2O3-Si)/Al composites
2O3-Si)/Al composites"> 6.2.3 Surface roughness of as sintered (Al2O3-Si)/Al composites
2O3-Si)/Al composites"> 6.2.4 Friction coefficients of as sintered (Al2O3-Si)/Al composites
O
2-C SYSTEM"> 6.3 WEAR CHARACTERISTICS IN AL-SiO
2-C SYSTEM
6.4 SUMMARY
CONCLUSIONS
SCOPE FOR FUTURE WORK
INNOVATIONS
REFERENCES
PUBLICATIONS DURING PHD
ACKNOWLEDGEMENTS
CURRICULUM VITAE
【參考文獻】:
期刊論文
[1]Effect of Si Content on Dynamic Recrystallization of Al-Si-Mg Alloys During Hot Extrusion[J]. Yuna Wu,Hengcheng Liao,Jian Yang,Kexin Zhou. Journal of Materials Science & Technology. 2014(12)
[2]SiCp及Al2O3w增強鑄態(tài)混雜金屬基復合材料的疲勞裂紋擴展機理(英文)[J]. AKM Asif IQBAL,Yoshio ARAI,Wakako ARAKI. Transactions of Nonferrous Metals Society of China. 2014(S1)
[3]攪拌鑄造SiC顆粒增強鋁基復合材料的組織與磨損性能(英文)[J]. Ali MAZAHERY,Mohsen Ostad SHABANI. Transactions of Nonferrous Metals Society of China. 2013(07)
[4]Application of ceramic short fiber reinforced Al alloy matrix composite on piston for internal combustion engines[J]. Wu Shenqing and Li Jun (School of Materials Science & Engineering, Southeast University, Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing 211189, China). China Foundry. 2010(04)
[5]Microstructure and tensile properties of TiB2p/6061Al composites[J]. 姜龍濤,陳國欽,赫曉東,趙敏,修子揚,范瑞君,武高輝. Transactions of Nonferrous Metals Society of China. 2009(S3)
[6]Wear behavior of Al-Si alloy matrix composites reinforced by γ-Al2O3 decomposed from AACH[J]. 付高峰,張景新,劉吉,王肇飛. Transactions of Nonferrous Metals Society of China. 2006(05)
本文編號:3155125
【文章來源】:哈爾濱工業(yè)大學黑龍江省 211工程院校 985工程院校
【文章頁數】:136 頁
【學位級別】:博士
【文章目錄】:
摘要
ABSTRACT
CHAPTER 1 INTRODUCTION
1.1 BACKGROUND AND SIGNIFICANCE OF SUBJECT
1.2 METAL MATRIX COMPOSITES OVERVIEW
1.2.1 Classification of MMCs
1.2.2 Particle reinforced AMCs
1.2.3 Applications of particle reinforced AMCs
1.2.4 Advantages and limitations of particle reinforced AMCs
1.2.5 Notion of Hybrid in particle reinforced AMCs
1.3 UNWANTED CHEMICAL REACTIONS IN AMCS
1.4 MAIN FABRICATION METHODS FOR MMC
1.4.1 In situ techniques
2O3, SiC AND Si"> 1.5 MECHANICAL PROPERTIES OF AMCS REINFORCED WITH Al2O3, SiC AND Si
1.6 PURE ALUMINUM AND Al-Si ALLOYS
1.7 THEORY OF WEAR
1.7.1 Abrasive wear
1.7.2 Adhesive wear
1.7.3 Erosive wear
1.7.4 Surface fatigue wear
1.7.5 Corrosive wear
1.8 PARAMETERS INFLUENCES THE FRICTION AND WEAR MECHANISMS
1.9 WEAR BEHAVIOR OF AMCS
1.10 LAYOUT OF THESIS
CHAPTER 2 MATERIAL SYSTEM AND EXPERIMENTAL DETAILS
2.1 RAW MATERIALS
2.2 PROCESSING METHODS
2.2.1 Ball milling
2.2.2 Reactive hot pressing
2.2.3 Hot extrusion process
2.3 MICROSTRUCTURAL CHARACTERIZATION
2.3.1 Differential thermal analysis
2.3.2 Microstructural analysis
2.3.3 X-ray diffraction
2.3.4 Atomic Force Microscopy
2.4 MECHANICAL TESTING
2.4.1 Brinell hardness
2.4.2 Room temperature tensile tests
2.4.3 Dry sliding wear tests
2.4.4 Relative density measurement
4C3 PREVENTION">CHAPTER 3 REACTION MECHANISM, PROCESS OPTIMIZATION AND AL4C3 PREVENTION
3.1 INTRODUCTION
3.2 OPTIMIZATION OF BALL MILLING PARAMETERS
3.3 THERMODYNAMIC CONSIDERATIONS AND DIFFERENTIAL THERMAL ANALYSIS (DTA)
3.3.1 Thermodynamic analysis of the Al-Si O2 system
3.3.2 Thermodynamic analysis of the Al-Si O2-C system
3.3.3 Reaction Energy activation
3.4 OPTIMIZATION OF SINTERING PARAMETERS
3.4.1 XRD and microstructures in Al-Si O2 system
2-Al-C system"> 3.4.2 XRD and Microstructures in SiO2-Al-C system
3.5 EFFECT OF THE SYNTHESIS TEMPERATURE IN PREVENTING AL4C3
3.6 SUMMARY
2O3-Si)/Al AND (Al2O3-SiC-Si)/Al MMCS">CHAPTER 4 FABRICATION OF (Al2O3-Si)/Al AND (Al2O3-SiC-Si)/Al MMCS
4.1 INTRODUCTION
4.2 FABRICATION TECHNOLOGY
4.2.1 XRD and micro structural observations
4.2.2 Effect of pressure
2O3-SI)/AL MMCS"> 4.3 EFFECT OF REINFORCEMENT VOLUME FRACTION ON MICROSTRUCTURE OF (Al2O3-SI)/AL MMCS
4C3"> 4.4 EFFECT OF VARYING SiO2/C/AL MOLAR RATIO IN PREVENTING Al4C3
4.5.1 Fabrication technology
2
4.6 SUMMARY
CHAPTER 5 MECHANICAL CHARACTERIZATION OF IN SITU AL BASED COMPOSITES
5.1 INTRODUCTION
2 SYSTEM"> 5.2 MECHANICAL PROPERTIES OF AS SINTERED COMPOSITES FABRICATED IN Al-SiO2 SYSTEM
5.2.1 Brinell hardness of as sintered composites
5.2.2 Room tensile properties of as sintered composites
5.2.3 Fracture surfaces of as sintered composites
2-C SYSTEM"> 5.3 MECHANICAL PROPERTIES OF AS SINTERED COMPOSITES FABRICATED IN AL-SiO2-C SYSTEM
5.3.1 Brinell hardness of as sintered composites
2-C system"> 5.3.2 Room tensile properties of as sintered composites fabricated in Al-SiO2-C system
5.3.3 Fracture surfaces of as sintered composites
2 SYSTEM"> 5.4 MECHANICAL PROPERTIES OF AS EXTRUDED COMPOSITES FABRICATED IN AL-SiO2 SYSTEM
5.4.1 Brinell hardness of as extruded composites
5.4.2 Room tensile properties of as extruded composites
5.4.3 Fracture surfaces of as extruded composites
5.5 SUMMARY
CHAPTER 6 WEAR CHARACTERISTICS AND FRICTION BEHAVIOR OF AL BASED COMPOSITES
6.1 INTRODUCTION
2O3-SI)/AL COMPOSITES"> 6.2 WEAR CHARACTERISTICS AND FRICTION BEHAVIOR OF (Al2O3-SI)/AL COMPOSITES
2O3-Si)/Al composites"> 6.2.1 Wear characteristics of as sintered (Al2O3-Si)/Al composites
2O3-Si)/Al composites"> 6.2.2 Wear surfaces of as sintered (Al2O3-Si)/Al composites
2O3-Si)/Al composites"> 6.2.3 Surface roughness of as sintered (Al2O3-Si)/Al composites
2O3-Si)/Al composites"> 6.2.4 Friction coefficients of as sintered (Al2O3-Si)/Al composites
O
2-C SYSTEM"> 6.3 WEAR CHARACTERISTICS IN AL-SiO
2-C SYSTEM
6.4 SUMMARY
CONCLUSIONS
SCOPE FOR FUTURE WORK
INNOVATIONS
REFERENCES
PUBLICATIONS DURING PHD
ACKNOWLEDGEMENTS
CURRICULUM VITAE
【參考文獻】:
期刊論文
[1]Effect of Si Content on Dynamic Recrystallization of Al-Si-Mg Alloys During Hot Extrusion[J]. Yuna Wu,Hengcheng Liao,Jian Yang,Kexin Zhou. Journal of Materials Science & Technology. 2014(12)
[2]SiCp及Al2O3w增強鑄態(tài)混雜金屬基復合材料的疲勞裂紋擴展機理(英文)[J]. AKM Asif IQBAL,Yoshio ARAI,Wakako ARAKI. Transactions of Nonferrous Metals Society of China. 2014(S1)
[3]攪拌鑄造SiC顆粒增強鋁基復合材料的組織與磨損性能(英文)[J]. Ali MAZAHERY,Mohsen Ostad SHABANI. Transactions of Nonferrous Metals Society of China. 2013(07)
[4]Application of ceramic short fiber reinforced Al alloy matrix composite on piston for internal combustion engines[J]. Wu Shenqing and Li Jun (School of Materials Science & Engineering, Southeast University, Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing 211189, China). China Foundry. 2010(04)
[5]Microstructure and tensile properties of TiB2p/6061Al composites[J]. 姜龍濤,陳國欽,赫曉東,趙敏,修子揚,范瑞君,武高輝. Transactions of Nonferrous Metals Society of China. 2009(S3)
[6]Wear behavior of Al-Si alloy matrix composites reinforced by γ-Al2O3 decomposed from AACH[J]. 付高峰,張景新,劉吉,王肇飛. Transactions of Nonferrous Metals Society of China. 2006(05)
本文編號:3155125
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/3155125.html
最近更新
教材專著