鋯/鐵基金屬氧化物納米材料的制備及其深度去除水中砷的性能研究
發(fā)布時(shí)間:2021-03-13 02:49
地表水和地下水中的天然砷(As(Ⅲ,Ⅴ))污染,由于具有致癌性和高毒性,已成為嚴(yán)重的環(huán)境和健康問題,威脅著全球數(shù)百萬(wàn)人的生命。即使在低濃度下,砷也具有較高的毒性和致癌性,因此,世界衛(wèi)生組織(WHO)將飲用水安全標(biāo)準(zhǔn)中砷的最大允許值由50ppb調(diào)至10 ppb。為了有效地去除被污染水體中砷,阻止各種疾病的發(fā)生,使人們生活更加健康,研究人員已經(jīng)探索出了各種吸附劑去除水中的砷。納米材料相對(duì)于傳統(tǒng)材料具有很多優(yōu)勢(shì),但開發(fā)出對(duì)As(Ⅲ)或As(Ⅴ)具有良好吸附能力、優(yōu)異選擇性、良好的再生能力和實(shí)際應(yīng)用的新型納米吸附劑,仍然是一項(xiàng)具有挑戰(zhàn)性的任務(wù)。本文介紹了水熱法合成四種不同的新型納米材料,分別為氧化鋯納米片、介孔氧化鋯納米結(jié)構(gòu)(MZN)、鋅鐵氧體納米團(tuán)簇(ZFNC)和磁性生物質(zhì)復(fù)合材料(CMOPC)用于去除水中砷,研究了初始pH值、As(Ⅲ)/As(V)初始濃度、接觸時(shí)間和共存離子對(duì)砷去除效率的影響,并研究了吸附機(jī)理和吸附材料凈化實(shí)際砷污染水的效能。(1)采用Fe3O4磁性納米顆粒修飾桔皮煅燒制備成一種新型復(fù)合材料(CMOPC),通過同時(shí)氧化和吸附方法去除水中的As(Ⅲ)。吸附實(shí)驗(yàn)結(jié)果表明,CM...
【文章來源】:中國(guó)科學(xué)技術(shù)大學(xué)安徽省 211工程院校 985工程院校
【文章頁(yè)數(shù)】:190 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
Acknowledgements
Abbreviations
Abstract
Abstract(中文)
Chapter 1 General Introduction
1.1. Background
1.2. Objectives of the study
1.3. Thesis framework
Reference
Chapter 2 Literature Review
2.1. Arsenic and its species
2.2. Geochemistry of arsenic
2.3. Arsenic toxicity
2.4. Sources and mobilization of arsenic
2.5. Arsenic remediation technologies
2.5.1. Precipitation
2.5.2. Ion exchange
2.5.3. Oxidation
2.5.4. Adsorption
2.5.5. Other remediation processes
2.6. Adsorbents for arsenic remediation
2.6.1. Amendment of adsorbent by iron (Fe) and selective calcination
2.6.2. Nano-sized metal oxide adsorbents
2.6.3. Mesoporous/macroporous adsorbents
References
Chapter 3 Facile synthesis of novel calcined magnetic orange peel composites for efficientremoval of arsenite through simultaneous oxidation and adsorption
3.1. Graphical abstract
3.2. Introduction
3.3. Experimental section
3.3.1. Materials
3.3.2. Synthesis of adsorbents
3.3.3. Batch adsorption tests
3.3.4. Characterization
3.4. Results and discussion
3.4.1. Preliminary batch adsorption experiment
3.4.2. Material Characterization
3.4.3. Effect of initial pH
3.4.4. Adsorption kinetics
3.4.5. Adsorption isotherms
3.4.6. Effect of co-existing ions
3.4.7. Arsenic adsorption mechanism
3.4.8. Desorption and regeneration
3.4.9. Practical implication
3.4.10. Effect of chemical composition variation on A(Ⅲ) removal
3.5. Conclusions
References
2 nanosheets as novel adsorbents for fast and efficientremoval of As(Ⅲ) from aqueous solutions">Chapter 4 Synthesis of ultra-large ZrO2 nanosheets as novel adsorbents for fast and efficientremoval of As(Ⅲ) from aqueous solutions
4.1. Graphical abstract
4.2. Introduction
4.3. Experimental
4.3.1. Materials and chemicals
4.3.2. Fabrication of ZrO2 nanosheets
4.3.3. Batch adsorption experiments
4.3.4. Characterization
4.4. Results and discussion
4.4.1. Characterization of adsorbent
4.4.2. Adsorption kinetics
4.4.3. Adsorption isotherms
4.4.4. Effect of common co-existing ions
4.4.5. Effect of initial pH
4.4.6. Adsorption mechanism
4.4.7. Practical application
4.5. Conclusions
References
Chapter 5 Mesoporous Zirconia Nanostructures (MZN) for Adsorption of As(Ⅲ) and As(Ⅴ)from Aqueous Solutions
5.1. Graphical abstract
5.2. Introduction
5.3. Materials and methods
5.3.1. Chemicals and materials
5.3.2. Synthesis of mesoporous zirconia nanostructures
5.3.3. Characterization
5.3.4. Batch adsorption tests
5.4. Results and discussion
5.4.1. Characterization
5.4.2. Effect of initial pH
5.4.3. Adsorption kinetics
5.4.4. Adsorption isotherms
5.4.5. Adsorption thermodynamic parameters analysis
5.4.6. Effect of common co-existing ions
5.4.7. Arsenic adsorption mechanism
5.4.8. Practical application
5.4.9. Regeneration and reuse
5.5. Conclusions
References
Chapter 6 Zinc Ferrite Nano-Clusters (ZFNC): Excellent Adsorbents of Highly Mobile andToxic Arsenite (As(Ⅲ)) from Aqueous Solutions
6.1. Graphical abstract
6.2. Introduction
6.3. Materials and method
6.3.1. Starting materials
6.3.2. Synthesis of ZFNC
6.3.3. Characterization
6.3.4. Batch adsorption tests
6.4. Results and discussion
6.4.1. Characterization of the ZFNC
6.4.1.1. Structural and magnetic analysis
6.4.1.2. Morphological and compositional analysis
6.4.2. Effect of pH on adsorption capacity
6.4.3. Adsorption kinetics
6.4.4. Adsorption isotherms
6.4.5. Thermodynamic analysis
6.4.6. Effect of common co-existing ions on As(Ⅲ) adsorption
6.4.7. Adsorption mechanism
6.4.8. Regeneration study
6.4.9. Environmental significance
6.5. Conclusions
References
Chapter 7 Conclusions and future perspectives
7.1. Major findings
7.2. Innovation
7.3. Challenges and future perspectives
Publications
本文編號(hào):3079443
【文章來源】:中國(guó)科學(xué)技術(shù)大學(xué)安徽省 211工程院校 985工程院校
【文章頁(yè)數(shù)】:190 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
Acknowledgements
Abbreviations
Abstract
Abstract(中文)
Chapter 1 General Introduction
1.1. Background
1.2. Objectives of the study
1.3. Thesis framework
Reference
Chapter 2 Literature Review
2.1. Arsenic and its species
2.2. Geochemistry of arsenic
2.3. Arsenic toxicity
2.4. Sources and mobilization of arsenic
2.5. Arsenic remediation technologies
2.5.1. Precipitation
2.5.2. Ion exchange
2.5.3. Oxidation
2.5.4. Adsorption
2.5.5. Other remediation processes
2.6. Adsorbents for arsenic remediation
2.6.1. Amendment of adsorbent by iron (Fe) and selective calcination
2.6.2. Nano-sized metal oxide adsorbents
2.6.3. Mesoporous/macroporous adsorbents
References
Chapter 3 Facile synthesis of novel calcined magnetic orange peel composites for efficientremoval of arsenite through simultaneous oxidation and adsorption
3.1. Graphical abstract
3.2. Introduction
3.3. Experimental section
3.3.1. Materials
3.3.2. Synthesis of adsorbents
3.3.3. Batch adsorption tests
3.3.4. Characterization
3.4. Results and discussion
3.4.1. Preliminary batch adsorption experiment
3.4.2. Material Characterization
3.4.3. Effect of initial pH
3.4.4. Adsorption kinetics
3.4.5. Adsorption isotherms
3.4.6. Effect of co-existing ions
3.4.7. Arsenic adsorption mechanism
3.4.8. Desorption and regeneration
3.4.9. Practical implication
3.4.10. Effect of chemical composition variation on A(Ⅲ) removal
3.5. Conclusions
References
2 nanosheets as novel adsorbents for fast and efficientremoval of As(Ⅲ) from aqueous solutions">Chapter 4 Synthesis of ultra-large ZrO2 nanosheets as novel adsorbents for fast and efficientremoval of As(Ⅲ) from aqueous solutions
4.1. Graphical abstract
4.2. Introduction
4.3. Experimental
4.3.1. Materials and chemicals
4.3.2. Fabrication of ZrO2 nanosheets
4.3.3. Batch adsorption experiments
4.3.4. Characterization
4.4. Results and discussion
4.4.1. Characterization of adsorbent
4.4.2. Adsorption kinetics
4.4.3. Adsorption isotherms
4.4.4. Effect of common co-existing ions
4.4.5. Effect of initial pH
4.4.6. Adsorption mechanism
4.4.7. Practical application
4.5. Conclusions
References
Chapter 5 Mesoporous Zirconia Nanostructures (MZN) for Adsorption of As(Ⅲ) and As(Ⅴ)from Aqueous Solutions
5.1. Graphical abstract
5.2. Introduction
5.3. Materials and methods
5.3.1. Chemicals and materials
5.3.2. Synthesis of mesoporous zirconia nanostructures
5.3.3. Characterization
5.3.4. Batch adsorption tests
5.4. Results and discussion
5.4.1. Characterization
5.4.2. Effect of initial pH
5.4.3. Adsorption kinetics
5.4.4. Adsorption isotherms
5.4.5. Adsorption thermodynamic parameters analysis
5.4.6. Effect of common co-existing ions
5.4.7. Arsenic adsorption mechanism
5.4.8. Practical application
5.4.9. Regeneration and reuse
5.5. Conclusions
References
Chapter 6 Zinc Ferrite Nano-Clusters (ZFNC): Excellent Adsorbents of Highly Mobile andToxic Arsenite (As(Ⅲ)) from Aqueous Solutions
6.1. Graphical abstract
6.2. Introduction
6.3. Materials and method
6.3.1. Starting materials
6.3.2. Synthesis of ZFNC
6.3.3. Characterization
6.3.4. Batch adsorption tests
6.4. Results and discussion
6.4.1. Characterization of the ZFNC
6.4.1.1. Structural and magnetic analysis
6.4.1.2. Morphological and compositional analysis
6.4.2. Effect of pH on adsorption capacity
6.4.3. Adsorption kinetics
6.4.4. Adsorption isotherms
6.4.5. Thermodynamic analysis
6.4.6. Effect of common co-existing ions on As(Ⅲ) adsorption
6.4.7. Adsorption mechanism
6.4.8. Regeneration study
6.4.9. Environmental significance
6.5. Conclusions
References
Chapter 7 Conclusions and future perspectives
7.1. Major findings
7.2. Innovation
7.3. Challenges and future perspectives
Publications
本文編號(hào):3079443
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/3079443.html
最近更新
教材專著