溫濕場(chǎng)交變環(huán)境下外加載荷對(duì)CFRP結(jié)構(gòu)與力學(xué)性能影響
[Abstract]:The carbon fiber reinforced composite (CFRP) has the advantages of small specific gravity, high specific strength, high specific modulus, high temperature resistance, fatigue resistance and chemical corrosion resistance. The composite material for spacecraft is affected by various severe environmental factors such as temperature, humidity and ultraviolet radiation during service, and the damp-heat environment is one of the most important factors leading to the degradation of the performance of the composite material. At present, the research on the heat and heat performance of the carbon fiber reinforced composite material is mainly concentrated on a single wet, hot or wet heat condition, and the research on the performance of the carbon fiber reinforced composite material is low due to the action of the bending load loading and the damp-heat circulation environment. Therefore, it is of great significance to study the influence of the applied bending load on the mechanical properties of the carbon fiber reinforced composite in the damp-heat aging environment. In order to investigate the evolution of mechanical properties of different porosity carbon fiber/ epoxy resin laminated plates under the influence of high and low temperature damp-heat aging environment and the applied load, the high and low temperature and high-temperature alternating-accelerated wet-heat cycle aging test was carried out on the T700CF/ 3234EP based on the moisture absorption state and the internal stress state during the service period of the material. by controlling the compression pressure, three kinds of laminated plates with the porosity of 0.04, 0.08 and 0.11 are prepared, the three kinds of porosity laminated plates are loaded, the loading load is 0,30%,40% and 60% of the maximum bending load of the laminated plates, and then the laminated plates are placed in a high and low temperature environment simulation test box, The structural and mechanical properties of the composite laminates with different cycle cycles were studied. The mechanical properties of the composite laminates were simulated by using the ABAQUS software, and the service life of the laminated plates under the heat and heat cycle and the bending load was predicted. The results show that the porosity of the laminated plate is distributed in the vicinity of the interface area between the rich resin area and the layer and the layer. In the same porosity laminated plate, with the increase of the heat-heat circulation period, the number of pores is increased, and the variation of the same pore is not obvious, and the pores are very close, and the pores are communicated with each other to form larger pores. The loaded laminated plate is just opposite, with the increase of the applied load, the single pore is obviously enlarged, and the number of the pores is not obvious. With the increase of the high and low temperature and hot-heat cycle, both the bending and the tensile strength show a downward trend. The larger the porosity, the greater the bending and tensile strength. The mechanism of the heat-and-heat circulation is the debonding of the fiber and the resin. Under the same impact energy, the depth of the pit of the laminated plate after the damp-heat aging is less than that of the laminated plate which is not subjected to heat and heat aging. As the impact energy increases, the depth of the pit increases, from 7.5J to 10J, the depth of the pit of the laminated plate will change. With the increase of the damp-heat period, the larger the residual compressive strength of the laminated plate with the larger the porosity. The loading of 40% and 60% of the laminate increased by 1.5% and 1.6% at 4-6 cycles, respectively. The higher the curing degree of the laminated plate with the larger the loading, the greater the hardness of the glass transition, the more obvious the glass transition temperature, but the chemical structure of the laminated plate is basically unchanged. With the increasing of damp-heat aging period, the greater the porosity and bending load, the greater the bending and tensile strength, the more obvious the delamination of the laminated plates and the debonding of the fibers, and, at the time of 4-6, due to the secondary curing of the resin, The bending and tensile strength of the laminated plates loaded with 40% and 60% of the load tended to be gentle. With the increase of the damp-heat period, the larger the porosity, the larger the bending load, the smaller the depth of the pit after the same impact energy, and the larger the porosity, the greater the depth of the pit after the same impact energy. The simulated values of the bending, tensile and impact mechanical properties obtained by the ABAQUS software are in good agreement with the experimental values, and the bending, tensile and impact mechanical properties of each layer of the laminated plate are simulated, and the bending of each layer of the laminated plate is found. The variation of tensile and impact mechanical properties is distributed symmetrically, and the strength of the middle two layers is the least. The life prediction results show that the damp-heat environment and the applied bending load greatly reduce the service life of the laminated plate.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB332
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王啟天;;復(fù)合材料彎曲各向同性層合板[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);1989年04期
2 何陵輝;層合板應(yīng)力的一種簡(jiǎn)單計(jì)算方法[J];復(fù)合材料學(xué)報(bào);1994年03期
3 譚惠豐,于增信,杜星文;層合板六參量幾何非線性高階剪切理論[J];固體力學(xué)學(xué)報(bào);2000年01期
4 崔建國(guó),傅永輝,李年,孫軍,何家文;金屬/金屬層合板疲勞性能研究[J];金屬學(xué)報(bào);2000年03期
5 陳曉,許可,戴詩(shī)亮;層合板分叉方程的Lyapunov-Schmidt約化分析[J];固體力學(xué)學(xué)報(bào);2001年03期
6 朱海堂,張獻(xiàn)瑞,諶續(xù)國(guó);用P型有限元分析層合板的應(yīng)力[J];鄭州工業(yè)大學(xué)學(xué)報(bào);2001年04期
7 崔海濤,溫衛(wèi)東,郝勇;碳纖維增強(qiáng)復(fù)合材料含孔層合板損傷破壞分析研究進(jìn)展[J];材料導(dǎo)報(bào);2002年02期
8 Ali Al-Mansour,程小全,寇長(zhǎng)河;單面貼補(bǔ)修理后層合板的拉伸性能[J];復(fù)合材料學(xué)報(bào);2005年03期
9 張二亮;張衛(wèi)紅;邱克鵬;;基于材料-結(jié)構(gòu)協(xié)同設(shè)計(jì)的層合板多級(jí)優(yōu)化方法[J];機(jī)械科學(xué)與技術(shù);2006年01期
10 章繼峰;張博明;杜善義;;基于健康監(jiān)測(cè)的層合板結(jié)構(gòu)載荷重構(gòu)[J];力學(xué)與實(shí)踐;2007年04期
相關(guān)會(huì)議論文 前10條
1 彭文杰;陳建橋;;層合板自由邊處分層應(yīng)力的優(yōu)化研究[A];節(jié)能環(huán)保 和諧發(fā)展——2007中國(guó)科協(xié)年會(huì)論文集(一)[C];2007年
2 張培偉;熊峰;王東平;;雙向編織碳纖維層合板的振動(dòng)破壞[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
3 周曄欣;黃爭(zhēng)鳴;;新的極限強(qiáng)度判據(jù)和剛度衰減對(duì)橋聯(lián)理論模擬層合板精度的改善[A];復(fù)合材料力學(xué)的現(xiàn)代進(jìn)展與工程應(yīng)用——全國(guó)復(fù)合材料力學(xué)研討會(huì)論文集[C];2007年
4 佟麗莉;葛源源;;鋪層角度和厚度偏差對(duì)層合板熱性能的影響[A];第十五屆全國(guó)復(fù)合材料學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];2008年
5 邵闖;葛森;陶華;;層合板的聲響應(yīng)分析[A];中國(guó)航空結(jié)構(gòu)動(dòng)力學(xué)專業(yè)組第十六屆學(xué)術(shù)交流會(huì)論文集[C];2008年
6 康軍;關(guān)志東;黎增山;丁聰;黃志強(qiáng);;復(fù)合材料開口層合板拉伸應(yīng)變集中與失效分析[A];第十四屆中國(guó)科協(xié)年會(huì)第11分會(huì)場(chǎng):低成本、高性能復(fù)合材料發(fā)展論壇論文集[C];2012年
7 卿尚波;晏麓暉;;纖維層合板抗彈性能數(shù)值模擬分析[A];第18屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集第Ⅲ冊(cè)[C];2009年
8 戴相花;高存法;;含橢圓孔磁電彈層合板的彎曲問(wèn)題研究[A];第16屆全國(guó)疲勞與斷裂學(xué)術(shù)會(huì)議會(huì)議程序冊(cè)[C];2012年
9 劉治東;唐頎;龐寶君;;基于等時(shí)差波陣面的層合板聲發(fā)射源定位[A];第十五屆全國(guó)復(fù)合材料學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];2008年
10 徐穎;溫衛(wèi)東;崔海坡;;低速?zèng)_擊下的層合板逐漸損傷擴(kuò)展模擬[A];第十六屆玻璃鋼/復(fù)合材料學(xué)術(shù)年會(huì)論文集[C];2005年
相關(guān)博士學(xué)位論文 前10條
1 蔡曉江;基于復(fù)合材料各向異性的切削力熱變化規(guī)律和表面質(zhì)量評(píng)價(jià)試驗(yàn)研究[D];上海交通大學(xué);2014年
2 張文姣;纖維增強(qiáng)復(fù)合材料的疲勞損傷模型及分析方法[D];哈爾濱工業(yè)大學(xué);2015年
3 宮文然;含分層損傷復(fù)合材料(CFRP)層合板結(jié)構(gòu)屈曲和后屈曲力學(xué)行為研究[D];天津大學(xué);2015年
4 邵雪飛;具界面損傷功能梯度/纖維金屬層合板非線性力學(xué)行為研究[D];湖南大學(xué);2016年
5 聶慧慧;Al/Mg/Al層合板的微觀組織結(jié)構(gòu)和熱變形行為[D];太原理工大學(xué);2017年
6 宋丹龍;CFRP結(jié)構(gòu)干涉連接區(qū)域損傷萌生機(jī)理與控制方法研究[D];西北工業(yè)大學(xué);2016年
7 田爽;玻璃纖維增強(qiáng)鋁合金層合板低速?zèng)_擊損傷特性研究[D];哈爾濱工業(yè)大學(xué);2016年
8 阮江濤;含沖擊損傷縫合和未縫合層合板壓縮實(shí)驗(yàn)研究與數(shù)值分析[D];天津大學(xué);2012年
9 彭文杰;復(fù)合材料層合結(jié)構(gòu)極限強(qiáng)度預(yù)測(cè)方法及分層應(yīng)力最小化研究[D];華中科技大學(xué);2009年
10 謝昱;層合板的應(yīng)力分析及其剝離[D];清華大學(xué);1988年
相關(guān)碩士學(xué)位論文 前10條
1 姜明;溫濕場(chǎng)交變環(huán)境下外加載荷對(duì)CFRP結(jié)構(gòu)與力學(xué)性能影響[D];哈爾濱工業(yè)大學(xué);2017年
2 李峰;層合板分層屈曲問(wèn)題的二維理論模型與數(shù)值研究[D];天津大學(xué);2016年
3 陳磊;正交異性層合板在力載和熱載下靜、動(dòng)態(tài)響應(yīng)的數(shù)值模擬[D];合肥工業(yè)大學(xué);2012年
4 劉奇;應(yīng)用纖維束復(fù)合材料試驗(yàn)研究層合板界面性能[D];華南理工大學(xué);2015年
5 張科;層合板結(jié)構(gòu)振動(dòng)分析的無(wú)網(wǎng)格方法[D];蘇州大學(xué);2015年
6 孫筱辰;纖維復(fù)合材料層合板的層間增韌及低速?zèng)_擊研究[D];山東大學(xué);2015年
7 姚宇地;含預(yù)置分層層合板的分層擴(kuò)展及其屈曲行為研究[D];哈爾濱工業(yè)大學(xué);2015年
8 莫佳亮;損傷對(duì)均質(zhì)和復(fù)合材料阻尼性能影響研究[D];南京航空航天大學(xué);2014年
9 彭文輝;層合板結(jié)構(gòu)的振動(dòng)和穩(wěn)定性分析及其優(yōu)化設(shè)計(jì)[D];南昌航空大學(xué);2015年
10 林志明;層合板結(jié)構(gòu)聲振特性及聲輻射最小化優(yōu)化分析[D];南昌航空大學(xué);2015年
,本文編號(hào):2507741
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2507741.html