稀土摻雜氟化物多層核殼納米晶上轉換和量子剪裁的研究
[Abstract]:The special optical property of the rare-earth doped material has wide application in the field of solar cells, biological imaging, biological sensors and the like. in particular in that field of solar cell, the rare-earth-doped luminescent material can effectively solve the problem of low conversion rate of the solar cell aiming at the two loss effect: the photons which are lower than the band-gap width of the light-absorbing material are converted into the absorption range by the up-conversion; By the quantum cutting process, a high-energy photon is cut into two or more photons with low energy, and the problem that the ultraviolet high-energy photon cannot be effectively absorbed can be solved. At present, however, research in this area is focused on the bulk material. In view of the above problems, this paper designs a rare-earth fluoride multi-layer core-shell structure, realizes the up-conversion of photons below the silicon band gap width, realizes the quantum cutting of the high-energy photons of the ultraviolet light, and realizes the common action of the two light-emitting mechanisms in a nano-crystal. In the single-doping system of Er ~ (3 +), Ho ~ (3 +) and Tm ~ (3 +), the photons of the band below the band gap (1100 nm) are converted into the silicon band gap (1100 nm) by the up-conversion process. The light-emitting performance of Er ~ (3 +) single-doping system (1523 nm) in three kinds of fluoride-doped nanocrystalline matrix is studied. The results show that NaYF _ 4 is the best matrix. The doping concentration of Er ~ (3 +) in the NaYF _ 4 matrix is adjusted. When the doping concentration is 10%, the conversion luminescence is the strongest. in that method, a layer of homogeneous inert shell layer is respectively coat on the surface of the three Er-(3 +) single-doped nano-crystal by an epitaxial growth method, and the luminescence intensity of the nano-crystal of the three matrix core-shell structure is obviously increased compared with that of the nuclear nano-crystal, wherein the effect of NaYF _ 4:10% Er-(3 +) @ NaYF _ 4 is the best; The quantum yield was 3.9% higher than that of the other two core-shell structures, and the luminous intensity was the highest in the currently reported Er ~ (3 +) single-doped system. The single-doping system of Ho ~ (3 +) (1157 nm) and Tm ~ (3 +) (1213 nm) single-doping system were studied with NaYF _ 4 as the matrix. When NaYF _ 4 is selected as a matrix, the three ions of Er ~ (3 +), Ho ~ (3 +), Tm ~ (3 +) are respectively doped in different shell layers, and the cross-relaxation between the doped layer and the doped layer is prevented by introducing an inert isolation layer between each active layer. Synthesis of NaYF _ 4:10% Er ~ (3 +) @ NaYF_4@NaYF_4:10% Ho ~ (3 +) @ NaYF_4@NaYF_4:1% Tm ~ (3 +) @ NaYF _ 4 multi-layer core-shell structure. Compared with NaYF _ 4:10% Er ~ (3 +) @ NaYF _ 4:10% Ho ~ (3 +) @ NaYF _ 4:1% Tm ~ (3 +) @ NaYF _ 4:1% Tm ~ (3 +) @ NaYF _ 4 multi-layer core-shell structure, and the co-doped NaYF _ 4:10% Er ~ (3 +),10% Ho ~ (3 +),1% Tm ~ (3 +) @ NaYF _ 4 core-shell structure, the luminescence intensity is increased by 1.9 and 16.7 times respectively at 1523 nm laser excitation, and the luminous intensity is increased by 2.1 and 14.5 times respectively at the excitation of 1157 nm laser; Under the excitation of 1213 nm laser, the luminescence intensity was increased by 1.4 and 6.7 times, respectively. The up-conversion luminescence mechanism of Er ~ (3 +), Ho ~ (3 +) and Tm ~ (3 +) was studied. The excitation spectrum of the nano-crystal containing the multi-layer core-shell structure of the isolation layer is tested, and the response range of the infrared band below the silicon band gap is expanded to 270 nm. In this paper, the quantum cutting process of the (3 +)-Yb ~ (3 +)-doped pair, Pr ~ (3 +)-Yb ~ (3 +)-doped pair and Er ~ (3 +) single-doped fluoride nano-crystal on the ultraviolet light was studied with NaYF _ 4 as the matrix. Controlling the morphology and size of the nano-crystal of NaYF _ 4:2% Tb ~ (3 +), x% Yb ~ (3 +) (x = 0,20,40,60,80) by controlling the doping concentration of Tb ~ (3 +) to 2%, and obtaining the nano-particles with uniform size and uniform dispersion. It is found that with the increase of the doping concentration of Yb ~ (3 +), its quantum cut-off luminescence is enhanced; after more than 20%, the luminescence is gradually reduced. By studying the dependence of the luminescence intensity and the excitation power, the quantum cutting mechanism is proposed, and the quantum cutting efficiency is 183.7% by the theoretical calculation. The effect of the shell layer on the quantum cut of NaYF _ 4:2% Tb ~ (3 +), x% Yb ~ (3 +) (x = 0,20,40,60,80) was studied. Under the blanket of the inert shell, the emission of the quantum cut was enhanced, and the trend was changed compared with that of the core. The doping concentration of Yb ~ (3 +) is 80%, and the light emission is the strongest. The two processes of conversion (Er ~ (3 +)) and quantum cutting (Tb ~ (3 +)-Yb ~ (3 +)) are realized by multi-layer core-shell structure. The synthesis of NaYF _ 4:10% Er ~ (3 +) @ Na Lu F_4@NaYF_4:2% Tb ~ (3 +),20% Yb ~ (3 +) @ NaYF _ 4 core-shell structure nanocrystals, Na Lu F _ 4 as the intermediate isolation layer not only effectively weaken the cross relaxation in the two doped shell layers, but also the atomic mass difference of Lu and Y makes it possible to directly observe the structure of the multi-layer core-shell by the transmission electron microscope. The quantum efficiency of the upconversion and quantum cutting process was measured by relative method, and the quantum yield was about 3.6% by using NaYF _ 4:10% Er ~ (3 +) @ NaYF _ 4 as the standard sample. The quantum yield of the quantum cut was about 130%.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TQ422;TB383.1
【相似文獻】
相關期刊論文 前10條
1 單秉銳,鄒玉林,劉燕行,臧競存;上轉換激光晶體研究進展[J];人工晶體學報;2004年05期
2 徐東勇,臧競存;上轉換激光和上轉換發(fā)光材料的研究進展[J];人工晶體學報;2001年02期
3 洪廣言;;新型紅外變可見上轉換薄膜問世[J];稀土信息;1993年03期
4 石連升;溫猛;錢艷楠;王銳;郝銘;;Yb:Er:Tm:LiTaO_3的上轉換發(fā)白光性能研究[J];中國稀土學報;2011年01期
5 陳奇丹;楊生;;上轉換材料的制備及發(fā)展[J];廣東化工;2012年08期
6 周永紅;田玉鵬;吳杰穎;;有機上轉換激光材料研究進展[J];化工時刊;2006年04期
7 張幸林;楊會然;孫會彬;劉淑娟;趙強;黃維;;基于三線態(tài)-三線態(tài)湮滅的能量上轉換[J];化學進展;2012年10期
8 李鑫德;上轉換熒光和激光[J];稀土信息;1997年07期
9 吳長鋒,秦冠仕,秦偉平,陳寶玖,黃世華,劉晃清,趙丹;Er~(3+)/Yb~(3+)共摻雜AlF_3基氟化物玻璃材料的頻率上轉換[J];中國稀土學報;2001年06期
10 涂進春;韓星星;李曉天;李楠;黃瑋;王小紅;劉鐘馨;曹陽;;α-NaYF_4:Yb,Er/SBA-15主客體復合材料的制備及其上轉換性能的研究[J];化學工程師;2012年07期
相關會議論文 前10條
1 嚴冬;楊正文;竺侃;;A1_2Y_4O_9:Yb,Er反蛋白石中的上轉換發(fā)射和顏色調諧[A];戰(zhàn)略性新興產(chǎn)業(yè)的培育和發(fā)展——首屆云南省科協(xié)學術年會論文集[C];2011年
2 臧競存;鄒玉林;劉燕行;單秉瑞;;上轉換激光晶體研究進展[A];中國硅酸鹽學會2003年學術年會論文摘要集[C];2003年
3 孫雅娟;孔祥貴;張宏;;稀土摻雜上轉換納米晶作為表面熒光探針研究[A];第11屆全國發(fā)光學學術會議論文摘要集[C];2007年
4 汪超;程亮;劉莊;;上轉換納米晶體癌癥治療的應用[A];中國化學會第28屆學術年會第4分會場摘要集[C];2012年
5 葉常青;周宇揚;梁作芹;王筱梅;;1.新型蒽衍生物受體應用高效上轉換體系的設計合成[A];中國化學會第29屆學術年會摘要集——第21分會:光化學[C];2014年
6 彭桂芳;洪廣言;賈慶新;李有謨;;紅外變可見上轉換材料薄膜的研制[A];首屆中國功能材料及其應用學術會議論文集[C];1992年
7 谷戰(zhàn)軍;田甘;趙玉亮;;熒光上轉換納米材料的光譜調控及其在生物醫(yī)學中的應用[A];中國化學會第29屆學術年會摘要集——第35分會:納米生物醫(yī)學中的化學問題[C];2014年
8 高偉;李嬌;高當麗;田宇;崔敏;孫瑜;閻曉慶;鄭海榮;;顆粒形貌對六方相NaYbF_4:Pr~(3+)納米晶體上轉換熒光的影響[A];第七屆全國稀土發(fā)光材料學術研討會會議論文摘要集[C];2011年
9 黃淮青;密叢叢;王猛;孫盼;徐淑坤;;磁性稀土摻雜上轉換納米發(fā)光顆粒的合成及表征[A];第七屆全國稀土發(fā)光材料學術研討會會議論文摘要集[C];2011年
10 李嬌;高偉;高當麗;田宇;鄭海榮;;四方相LiYF4:Yb/Er晶體顆粒的合成及上轉換熒光研究[A];2011西部光子學學術會議論文摘要集[C];2011年
相關博士學位論文 前10條
1 邵韋;稀土摻雜氟化物多層核殼納米晶上轉換和量子剪裁的研究[D];哈爾濱工業(yè)大學;2017年
2 仲崇娜;核殼結構上轉換稀土化合物納米晶的合成、發(fā)光性能及抗腫瘤研究[D];哈爾濱工程大學;2014年
3 牛娜;幾種上轉換稀土發(fā)光材料的合成與性能研究[D];哈爾濱工程大學;2013年
4 黎作鵬;體域納米網(wǎng)絡關鍵技術研究[D];哈爾濱工程大學;2014年
5 丁亞丹;紅外上轉換和吸收納米材料的制備、性能與生物醫(yī)學應用[D];東北師范大學;2015年
6 李亮;基于增強光吸收的DSSC電極修飾與光電性能研究[D];哈爾濱工業(yè)大學;2015年
7 高偉;鑭系離子摻雜氟化物微納晶體的熒光特性研究[D];陜西師范大學;2015年
8 谷野;診療一體化上轉換納米平臺的構建及其腫瘤診療效果與生物安全性的研究[D];吉林大學;2016年
9 王浩;稀土上轉換/硅基納米復合材料的設計制備及生物醫(yī)學應用研究[D];哈爾濱工業(yè)大學;2016年
10 岑瑤;基于上轉換顆粒等新型納米材料的生物傳感方法研究[D];湖南大學;2016年
相關碩士學位論文 前10條
1 羅培;基于TiO_2:Yb,Ho,F的納米載藥體系的構建及應用[D];鄭州大學;2017年
2 朱笑天;金納米棒的制備與修飾及其在環(huán)境污染物檢測中的應用[D];鄭州大學;2017年
3 王靜;細菌視紫紅質—稀土上轉換納米粒子生物納米體系的構建及其紅外光電響應研究[D];西南大學;2015年
4 梅勇;上轉換納米晶的制備、調控和發(fā)光過程研究[D];遼寧大學;2015年
5 韓全澤;稀土離子摻雜氟化物上轉換材料的兩步合成及發(fā)光性質研究[D];大連海事大學;2015年
6 王寧;稀土摻雜BaLu_2F_8微米晶的可控制備及上轉換光發(fā)射性能研究[D];哈爾濱工業(yè)大學;2015年
7 王荷;氧化鈰基上轉換發(fā)光粉體的制備、結構與發(fā)光性能研究[D];溫州大學;2015年
8 高方綺;離子摻雜NaGdF_4:Ho~(3+)納米棒上轉換熒光的研究[D];陜西師范大學;2015年
9 楊揚;Er和Yb共摻雜稀土氧化物上轉換納米材料的制備及性能研究[D];北京化工大學;2015年
10 張令娥;NaGdF_4基復合納米載體制備及其腫瘤診斷與治療應用研究[D];寧波大學;2015年
,本文編號:2486154
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2486154.html