天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 材料論文 >

負(fù)載銅石墨烯增強(qiáng)的銅基塊體復(fù)合材料組織及性能的研究

發(fā)布時(shí)間:2019-05-26 18:35
【摘要】:由于石墨烯具有優(yōu)異的電學(xué)和力學(xué)性能,以石墨烯作為增強(qiáng)體,將其和易成型的銅復(fù)合在一起有望開發(fā)出綜合性能優(yōu)異的石墨烯增強(qiáng)銅基復(fù)合材料,滿足現(xiàn)代工業(yè)快速發(fā)展的要求。本文采用原位還原法制備負(fù)載銅石墨烯粉末(Cu-dopedRGO)、采用球磨+熱壓法燒結(jié)制備負(fù)載銅石墨烯增強(qiáng)的銅基塊體復(fù)合材料。利用電鏡掃描(SEM)、透射電子顯微鏡(TEM)、拉曼光譜儀(Raman)和X射線光電子能譜儀(XPS)對負(fù)載銅石墨烯復(fù)合粉體的組織、形貌、尺寸、分布情況、結(jié)構(gòu)、復(fù)合粉體中化學(xué)鍵的結(jié)合態(tài)進(jìn)行表征和分析,利用X射線衍射(XRD)、電鏡掃描(SEM)對負(fù)載銅石墨烯復(fù)合粉體和銅粉的混合粉末以及負(fù)載銅石墨烯增強(qiáng)的銅基塊體復(fù)合材料微觀組織進(jìn)行表征,并對不同負(fù)載銅石墨烯含量的銅基復(fù)合材料致密度、導(dǎo)電率和硬度等性能進(jìn)行測試,通過以上研究得出下面的結(jié)論。(1)采用原位還原法合成負(fù)載銅石墨烯,在磁力加熱攪拌的環(huán)境下干燥可獲得無其他雜質(zhì)純凈的復(fù)合粉體。負(fù)載銅石墨烯復(fù)合粉體中銅粒子基本均勻的分布在石墨烯片層上,部分銅粒子被石墨烯片層包裹,有效地改善了石墨烯的團(tuán)聚,提高了石墨烯的分散性。(2)隨著pH值的增大,負(fù)載銅石墨烯片層上負(fù)載的銅粒子粒徑減小。當(dāng)pH值為12時(shí),石墨烯片層上負(fù)載的銅粒子平均粒徑小于l00nnm。(3)隨著負(fù)載銅石墨烯含量的增加,采用500nm銅粉制備的負(fù)載銅石墨烯增強(qiáng)的銅基塊體復(fù)合材料致密度先增大后下降,硬度不斷上升,與純銅相比提高了 150%,而導(dǎo)電率卻略有下降,當(dāng)負(fù)載石墨烯添加量為1.5wt%時(shí),負(fù)載銅石墨烯增強(qiáng)的銅基塊體復(fù)合材料的導(dǎo)電率也達(dá)87%IACS,與純銅相比降低了 10%。負(fù)載銅石墨烯增強(qiáng)的銅基塊體復(fù)合材料綜合性能與純銅相比更加優(yōu)異。(4)與采用50μim銅粉制備的負(fù)載銅石墨烯增強(qiáng)的銅基復(fù)合材料相比,采用50nm銅粉制備的負(fù)載銅石墨烯增強(qiáng)的銅基復(fù)合材料表面組織分布均勻,負(fù)載銅石墨烯團(tuán)聚不明顯。說明納米銅粉有效的阻止了負(fù)載銅石墨烯的團(tuán)聚,改善了團(tuán)聚現(xiàn)象。(5)隨著負(fù)載銅石墨烯含量的增加,采用50μm銅粉制備的負(fù)載銅石墨烯增強(qiáng)的銅基塊體復(fù)合材料和采用50nm銅粉制備的負(fù)載銅石墨烯增強(qiáng)的銅基塊體復(fù)合材料的致密度、導(dǎo)電率和硬度均有下降,但兩者下降幅度不同。采用50μm銅粉制備的負(fù)載銅石墨烯增強(qiáng)的銅基復(fù)合材料致密度、導(dǎo)電率和硬度下降了 15%、30%和30%,而采用50nm銅粉制備的負(fù)載銅石墨烯增強(qiáng)的銅基復(fù)合材料致密度、導(dǎo)電率和硬度下降分別為5%、15%和25%。硬度相比于純銅都有所提高,分別提升了 30%和115%。采用50nm銅粉制備的負(fù)載銅石墨烯增強(qiáng)的銅基復(fù)合材料的各項(xiàng)性能均優(yōu)于采用50μm銅粉制備的負(fù)載銅石墨烯增強(qiáng)的銅基塊體復(fù)合材料。
[Abstract]:Because graphene has excellent electrical and mechanical properties, graphene is used as reinforcement to combine graphene with easily formed copper, which is expected to develop graphene reinforced copper matrix composites with excellent comprehensive properties. To meet the requirements of the rapid development of modern industry. In this paper, loaded copper graphene powder (Cu-dopedRGO) was prepared by in situ reduction method, and copper matrix bulk composites reinforced with copper graphene were prepared by ball milling and hot pressing sintering. The microstructure, morphology, size, distribution and structure of copper graphene composite powder were studied by electron microscope scanning (SEM), transmission electron microscope (TEM), Raman spectrometer (Raman) and X-ray photoelectron spectrometer (XPS). The bound states of chemical bonds in the composite powder were characterized and analyzed by X-ray diffraction (XRD),). The microstructure of the mixed powder of copper graphene composite powder and copper powder and the microstructure of copper matrix composites reinforced with copper graphene were characterized by scanning electron microscope (SEM), and the density of copper matrix composites with different copper graphene content was also characterized. Through the above research, the following conclusions are drawn. (1) loaded copper graphene can be synthesized by in situ reduction method, and the composite powder without other impurities can be obtained by drying in the environment of magnetic heating and stirring. The copper particles in the loaded copper graphene composite powder are basically uniformly distributed on the graphene lamellar layer, and some copper particles are wrapped in the graphene lamellar layer, which effectively improves the agglomeration of graphene. The dispersion of graphene was improved. (2) with the increase of pH value, the particle size of copper particles loaded on copper graphene layer decreased. When the pH value is 12:00, the average particle size of copper particles loaded on graphene lamellar is less than 1 00nm. (3) with the increase of copper graphene content, The density of copper matrix bulk composites reinforced with copper graphene increased at first and then decreased, and the hardness increased by 150% compared with pure copper, but the conductivity decreased slightly. When the content of graphene is 1.5wt%, the conductivity of copper matrix composites reinforced with copper graphene is 87% IAC, which is 10% lower than that of pure copper. The comprehensive properties of copper matrix composites reinforced with copper graphene are better than those of pure copper. (4) compared with copper matrix composites reinforced with copper graphene supported with 50 渭 im copper powder, The surface structure of copper matrix composites reinforced with copper graphene was uniform, and the agglomeration of copper graphene loaded with copper graphene was not obvious. The results show that nano-copper powder can effectively prevent the agglomeration of loaded copper graphene and improve the agglomeration phenomenon. (5) with the increase of copper graphene content, The density, conductivity and hardness of copper matrix bulk composites reinforced with copper graphene and copper matrix composites reinforced with copper graphene were decreased by 50 渭 m copper powder and 50nm copper powder, but the decrease range was different. The density, conductivity and hardness of copper matrix composites reinforced with copper graphene were reduced by 15%, 30% and 30%, respectively, while the density of copper matrix composites reinforced with copper graphene was prepared by using 50 渭 m copper powder, while the density of copper matrix composites reinforced with copper graphene was reduced by 15%, 30% and 30%, respectively, and the density of copper matrix composites reinforced with copper graphene was obtained by using 50nm copper powder. The conductivity and hardness decreased by 5%, 15% and 25%, respectively. Compared with pure copper, the hardness is increased by 30% and 115%, respectively. The properties of copper matrix composites reinforced with copper graphene supported on 50nm copper powder are better than those reinforced with copper graphene supported copper matrix composites prepared with 50 渭 m copper powder.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB33

【參考文獻(xiàn)】

相關(guān)期刊論文 前4條

1 燕紹九;楊程;洪起虎;陳軍洲;劉大博;戴圣龍;;石墨烯增強(qiáng)鋁基納米復(fù)合材料的研究[J];材料工程;2014年04期

2 楊建鋒;季鐵正;張教強(qiáng);鄭星卓;谷敬凱;李萍;;石墨烯/超高分子量聚乙烯復(fù)合材料的導(dǎo)電性能[J];高分子材料科學(xué)與工程;2013年12期

3 李鳳平;金屬基復(fù)合材料的發(fā)展與研究現(xiàn)狀[J];玻璃鋼/復(fù)合材料;2004年01期

4 尹志民,張生龍;高強(qiáng)高導(dǎo)銅合金研究熱點(diǎn)及發(fā)展趨勢[J];礦冶工程;2002年02期

相關(guān)碩士學(xué)位論文 前2條

1 劉宇航;少層石墨烯增強(qiáng)鎳基復(fù)合材料的制備與性能研究[D];哈爾濱工業(yè)大學(xué);2013年

2 匡達(dá);石墨烯/鎳基復(fù)合材料的制備和性能研究[D];上海交通大學(xué);2013年

,

本文編號:2485531

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2485531.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶623d3***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com