基于錳、鉬氧化物及其復(fù)合納米材料的儲(chǔ)能器件研究
[Abstract]:The super-capacitor, also known as an electrochemical capacitor, is a new type of energy storage device that has developed rapidly in recent years. Compared with the battery, the super capacitor has the advantages of high power density, quick charge and discharge, long service life and high safety, and has wide application prospect in the fields of electric automobile, information technology, aerospace, clean energy development and utilization. The structure layout and the electrode material used by the super capacitor determine the performance of the device to a great extent, which is the core of the whole device design. According to the structure layout, the super-capacitor is divided into two types: the symmetrical structure and the non-symmetrical structure, and the electrode material is divided into two electric double layer capacitors represented by the carbon material, and the pseudo-capacitor represented by the transition metal oxide and the mixed type capacitor are used. In contrast, the latter two kinds of capacitors have to break through the large-scale application, but they have a greater energy density, which is an important development direction of the super-capacitor in recent years. Therefore, this paper focuses on two types of supercapacitors. The method comprises the following steps of: selecting active carbon with stable chemical property, high specific surface area, carbon nano-tube, cheap and environment-friendly manganese dioxide and ferrosilicon as the electrode material of the super capacitor, The optimum design of the super capacitor structure, the preparation of the electrode material, the selection of the electrolyte, the performance of the device and the influencing factors are systematically studied. The main research and innovation points are as follows: 1. on a single carbon fiber substrate, a manganese dioxide nanosheet is grown by an electrochemical constant voltage method, and the polyelectrolyte film is grown in situ outside the manganese dioxide nanosheet to be coated, and the electrochemical property thereof is studied. The results show that the obtained manganese dioxide nanosheet belongs to the manganese dioxide, and the acid electrolyte can corrode the uncoated manganese dioxide nanosheet. When the manganese dioxide nano-sheet is coated with the polyelectrolyte thin film, the corrosion of the acidic electrolyte can be prevented. Etching. The composite material has good electrochemical property after 15 minutes of manganese dioxide nanosheet is grown at constant voltage and the composite material is coated with a 2-minute polyelectrolyte. The super-capacitor constructed by the composite material has a working voltage window of 0-0.8V, and the volume capacitance of the device can reach 69.3 F-3 under the current density of 0.1 mA-3; and the device can retain 86.7% of the initial capacitance after the 1000-cycle test on the basis of which, a symmetrical structure solid-state flexible super capacitor matched with the micro-nano electromechanical system and the flexible electronic device is developed 2. on the carbon cloth substrate, the manganese dioxide nanosheet is grown by an electrochemical constant current method, The method is characterized in that the manganese dioxide nanosheet synthesized by the method is tested to prove that the manganese dioxide nanosheet belongs to water, the manganese dioxide nanosheet is grown at constant current for 75 minutes on a carbon cloth substrate, Capacitor, working voltage window is 0 ~ 1 .8 V. The surface capacitance of the device can reach 1.41 F cm-2 at a current density of 0.5 mA cm-2, and the device can retain 98.6% of the initial capacitance after 1000 cycles. On the basis of this, it has successfully developed the non-symmetrical structure solid-state flexible super-fine structure matched with the wearable electronic equipment. 3. using the transition metal oxide, the manganese dioxide with the greatest work function difference and the manganese dioxide are used as the positive part of the super-capacitor of the asymmetric structure, The negative electrode material is synthesized by hydrothermal synthesis of the manganese dioxide nano-wire and the conductive nano-band, and the carbon nano-tube with a certain proportion is respectively doped to improve the electrode. The study shows that the working voltage window is 0-2.0V, and the volume ratio of the asymmetric super capacitor is 50.2 at the scanning speed of 2 mV s-1. The working voltage window of the device can reach 0-4.0V, when the power density is 261.4 mW cm-3, the energy density of the capacitor reaches 28.6 mW. h cm-3. After 10,000 cycles, the device will be able to retain 99.6%
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TM53;TB383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 許開卿;吳季懷;范樂慶;冷晴;鐘欣;蘭章;黃妙良;林建明;;水凝膠聚合物電解質(zhì)超級(jí)電容器研究進(jìn)展[J];材料導(dǎo)報(bào);2011年15期
2 梓文;;超高能超級(jí)電容器[J];兵器材料科學(xué)與工程;2013年04期
3 ;歐盟創(chuàng)新型大功率超級(jí)電容器問世[J];功能材料信息;2014年01期
4 周霞芳;;無污染 充電快 春節(jié)后有望面市 周國(guó)泰院士解密“超級(jí)電容器”[J];環(huán)境與生活;2012年01期
5 江奇,瞿美臻,張伯蘭,于作龍;電化學(xué)超級(jí)電容器電極材料的研究進(jìn)展[J];無機(jī)材料學(xué)報(bào);2002年04期
6 朱修鋒,王君,景曉燕,張密林;超級(jí)電容器電極材料[J];化工新型材料;2002年04期
7 景茂祥,沈湘黔,沈裕軍,鄧春明,翟海軍;超級(jí)電容器氧化物電極材料的研究進(jìn)展[J];礦冶工程;2003年02期
8 朱磊,吳伯榮,陳暉,劉明義,簡(jiǎn)旭宇,李志強(qiáng);超級(jí)電容器研究及其應(yīng)用[J];稀有金屬;2003年03期
9 賀福;碳(炭)材料與超級(jí)電容器[J];高科技纖維與應(yīng)用;2005年03期
10 鄧梅根,楊邦朝,胡永達(dá);卷繞式活性炭纖維布超級(jí)電容器的研究[J];功能材料;2005年08期
相關(guān)會(huì)議論文 前10條
1 馬衍偉;張熊;余鵬;陳堯;;新型超級(jí)電容器納米電極材料的研究[A];2009中國(guó)功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
2 張易寧;何騰云;;超級(jí)電容器電極材料的最新研究進(jìn)展[A];第二十八屆全國(guó)化學(xué)與物理電源學(xué)術(shù)年會(huì)論文集[C];2009年
3 鐘輝;曾慶聰;吳丁財(cái);符若文;;聚苯乙烯基層次孔碳的活化及其在超級(jí)電容器中的應(yīng)用[A];中國(guó)化學(xué)會(huì)第15屆反應(yīng)性高分子學(xué)術(shù)討論會(huì)論文摘要預(yù)印集[C];2010年
4 趙家昌;賴春艷;戴揚(yáng);解晶瑩;;扣式超級(jí)電容器組的研制[A];第十二屆中國(guó)固態(tài)離子學(xué)學(xué)術(shù)會(huì)議論文集[C];2004年
5 單既成;陳維英;;超級(jí)電容器與通信備用電源[A];通信電源新技術(shù)論壇——2008通信電源學(xué)術(shù)研討會(huì)論文集[C];2008年
6 王燕;吳英鵬;黃毅;馬延風(fēng);陳永勝;;單層石墨用作超級(jí)電容器的研究[A];2009年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊(cè))[C];2009年
7 趙健偉;倪文彬;王登超;黃忠杰;;超級(jí)電容器電極材料的設(shè)計(jì)、制備及性質(zhì)研究[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場(chǎng)摘要集[C];2010年
8 張琦;鄭明森;董全峰;田昭武;;基于薄液層反應(yīng)的新型超級(jí)電容器——多孔碳電極材料的影響[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場(chǎng)摘要集[C];2010年
9 馬衍偉;;新型超級(jí)電容器石墨烯電極材料的研究[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第7分冊(cè))[C];2010年
10 劉不厭;彭喬;孫s,
本文編號(hào):2484647
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2484647.html