天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 材料論文 >

基于錳、鉬氧化物及其復(fù)合納米材料的儲(chǔ)能器件研究

發(fā)布時(shí)間:2019-05-24 06:49
【摘要】:超級(jí)電容器也稱為電化學(xué)電容器,是一種近年來發(fā)展迅速的新型能量存儲(chǔ)器件。相對(duì)于電池而言,超級(jí)電容器具有高功率密度、快速充放電、長(zhǎng)使用壽命和高安全性等優(yōu)點(diǎn),在電動(dòng)汽車、信息技術(shù)、航空航天、清潔能源的開發(fā)和利用等諸多領(lǐng)域,有著廣闊的應(yīng)用前景。超級(jí)電容器所采用的結(jié)構(gòu)布局和電極材料,在很大程度上決定了器件的性能,是整個(gè)器件設(shè)計(jì)的核心。以結(jié)構(gòu)布局來分,超級(jí)電容器分為對(duì)稱結(jié)構(gòu)和非對(duì)稱結(jié)構(gòu)兩種;以電極材料來分,主要有采用以碳材料為代表的雙電層電容器、采用以過渡金屬氧化物為代表的贗電容器和二者皆用的混合型電容器。相對(duì)而言,后兩種電容器在大規(guī)模應(yīng)用方面盡管還有一些瓶頸有待突破,但它們有更大的能量密度,是超級(jí)電容器在近來的一個(gè)重要發(fā)展方向。因此,本論文以后面兩種類型的超級(jí)電容器為研究重點(diǎn)。本文選定化學(xué)性能穩(wěn)定、高比表面積的活性炭、碳納米管,廉價(jià)且環(huán)境友好的二氧化錳、三氧化鉬作為超級(jí)電容器的電極材料,并與有機(jī)導(dǎo)電高分子材料聚吡咯進(jìn)行復(fù)合,結(jié)合多種材料表征測(cè)試方法,系統(tǒng)地研究了超級(jí)電容器結(jié)構(gòu)的優(yōu)化設(shè)計(jì)、電極材料的制備、電解液的選擇、器件的性能和影響因素等。主要的研究?jī)?nèi)容和創(chuàng)新點(diǎn)如下: 1.在單根碳纖維基底上,用電化學(xué)恒電壓法生長(zhǎng)了二氧化錳納米片,并在二氧化錳納米片外原位生長(zhǎng)聚吡咯薄膜進(jìn)行包覆,研究其電化學(xué)性能。結(jié)果表明,得到的二氧化錳納米片屬于£型二氧化錳,且酸性電解質(zhì)能腐蝕未包覆的二氧化錳納米片;當(dāng)£型二氧化錳包覆聚吡咯薄膜后,可以防止酸性電解質(zhì)的腐蝕。在恒電壓下生長(zhǎng)15分鐘的二氧化錳納米片,且經(jīng)2分鐘的聚吡咯生長(zhǎng)包覆后,復(fù)合材料有良好的電化學(xué)性能。這種復(fù)合材料構(gòu)建的超級(jí)電容器,工作電壓窗口為0~0.8V,在0.1mA cm-3的電流密度下,器件的體積電容可以達(dá)到69.3F cm-3;經(jīng)1000次循環(huán)測(cè)試,器件能夠保留86.7%的初始電容量。在此基礎(chǔ)上開發(fā)出與微納機(jī)電系統(tǒng)和柔性電子器件相匹配的對(duì)稱結(jié)構(gòu)固態(tài)柔性超級(jí)電容器。 2.在碳布基底上,用電化學(xué)恒電流法生長(zhǎng)了二氧化錳納米片,并在二氧化錳納米片外原位生長(zhǎng)聚吡咯包覆薄膜,研究其電化學(xué)性能。該方法合成的二氧化錳納米片,經(jīng)過檢測(cè)證明其屬于水鈉錳礦。在碳布基底上,在恒電流下生長(zhǎng)75分鐘的二氧化錳納米片,經(jīng)過2.5分鐘的聚吡咯生長(zhǎng)包覆后,作為超級(jí)電容器的正極,與碳布基底包覆活性炭負(fù)電極匹配后,組成非對(duì)稱結(jié)構(gòu)超級(jí)電容器,工作電壓窗口為0~1.8V。在0.5mA cm-2的電流密度下,器件的面電容可以達(dá)到1.41F cm-2,經(jīng)1000次循環(huán)測(cè)試,器件能夠保留98.6%的初始電容量。在此基礎(chǔ)上,成功開發(fā)出與可穿戴式電子設(shè)備匹配的非對(duì)稱結(jié)構(gòu)固態(tài)柔性超級(jí)電容器。 3.采用過渡金屬氧化物中,具有最大功函數(shù)差的二氧化錳和三氧化鉬作為非對(duì)稱結(jié)構(gòu)超級(jí)電容器的正、負(fù)電極材料。用水熱法合成二氧化錳納米線和三氧化鉬納米帶,分別摻入一定比例的碳納米管來改善電極的導(dǎo)電性能。研究表明,由這兩種電極構(gòu)成的非對(duì)稱超級(jí)電容器,工作電壓窗口為0~2.0V,在2mV s-1的掃描速度下,其體積比電容為50.2F cm-3。進(jìn)一步在正、負(fù)電極之間插入內(nèi)聯(lián)結(jié)構(gòu)的中間層后,器件的工作電壓窗口可以達(dá)到0~4.0V,當(dāng)功率密度為261.4mW cm-3時(shí),該電容器的能量密度達(dá)到28.6mWh cm-3。經(jīng)10,000次循環(huán)測(cè)試,器件能夠保留99.6%的初始電容量。
[Abstract]:The super-capacitor, also known as an electrochemical capacitor, is a new type of energy storage device that has developed rapidly in recent years. Compared with the battery, the super capacitor has the advantages of high power density, quick charge and discharge, long service life and high safety, and has wide application prospect in the fields of electric automobile, information technology, aerospace, clean energy development and utilization. The structure layout and the electrode material used by the super capacitor determine the performance of the device to a great extent, which is the core of the whole device design. According to the structure layout, the super-capacitor is divided into two types: the symmetrical structure and the non-symmetrical structure, and the electrode material is divided into two electric double layer capacitors represented by the carbon material, and the pseudo-capacitor represented by the transition metal oxide and the mixed type capacitor are used. In contrast, the latter two kinds of capacitors have to break through the large-scale application, but they have a greater energy density, which is an important development direction of the super-capacitor in recent years. Therefore, this paper focuses on two types of supercapacitors. The method comprises the following steps of: selecting active carbon with stable chemical property, high specific surface area, carbon nano-tube, cheap and environment-friendly manganese dioxide and ferrosilicon as the electrode material of the super capacitor, The optimum design of the super capacitor structure, the preparation of the electrode material, the selection of the electrolyte, the performance of the device and the influencing factors are systematically studied. The main research and innovation points are as follows: 1. on a single carbon fiber substrate, a manganese dioxide nanosheet is grown by an electrochemical constant voltage method, and the polyelectrolyte film is grown in situ outside the manganese dioxide nanosheet to be coated, and the electrochemical property thereof is studied. The results show that the obtained manganese dioxide nanosheet belongs to the manganese dioxide, and the acid electrolyte can corrode the uncoated manganese dioxide nanosheet. When the manganese dioxide nano-sheet is coated with the polyelectrolyte thin film, the corrosion of the acidic electrolyte can be prevented. Etching. The composite material has good electrochemical property after 15 minutes of manganese dioxide nanosheet is grown at constant voltage and the composite material is coated with a 2-minute polyelectrolyte. The super-capacitor constructed by the composite material has a working voltage window of 0-0.8V, and the volume capacitance of the device can reach 69.3 F-3 under the current density of 0.1 mA-3; and the device can retain 86.7% of the initial capacitance after the 1000-cycle test on the basis of which, a symmetrical structure solid-state flexible super capacitor matched with the micro-nano electromechanical system and the flexible electronic device is developed 2. on the carbon cloth substrate, the manganese dioxide nanosheet is grown by an electrochemical constant current method, The method is characterized in that the manganese dioxide nanosheet synthesized by the method is tested to prove that the manganese dioxide nanosheet belongs to water, the manganese dioxide nanosheet is grown at constant current for 75 minutes on a carbon cloth substrate, Capacitor, working voltage window is 0 ~ 1 .8 V. The surface capacitance of the device can reach 1.41 F cm-2 at a current density of 0.5 mA cm-2, and the device can retain 98.6% of the initial capacitance after 1000 cycles. On the basis of this, it has successfully developed the non-symmetrical structure solid-state flexible super-fine structure matched with the wearable electronic equipment. 3. using the transition metal oxide, the manganese dioxide with the greatest work function difference and the manganese dioxide are used as the positive part of the super-capacitor of the asymmetric structure, The negative electrode material is synthesized by hydrothermal synthesis of the manganese dioxide nano-wire and the conductive nano-band, and the carbon nano-tube with a certain proportion is respectively doped to improve the electrode. The study shows that the working voltage window is 0-2.0V, and the volume ratio of the asymmetric super capacitor is 50.2 at the scanning speed of 2 mV s-1. The working voltage window of the device can reach 0-4.0V, when the power density is 261.4 mW cm-3, the energy density of the capacitor reaches 28.6 mW. h cm-3. After 10,000 cycles, the device will be able to retain 99.6%
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TM53;TB383.1

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 許開卿;吳季懷;范樂慶;冷晴;鐘欣;蘭章;黃妙良;林建明;;水凝膠聚合物電解質(zhì)超級(jí)電容器研究進(jìn)展[J];材料導(dǎo)報(bào);2011年15期

2 梓文;;超高能超級(jí)電容器[J];兵器材料科學(xué)與工程;2013年04期

3 ;歐盟創(chuàng)新型大功率超級(jí)電容器問世[J];功能材料信息;2014年01期

4 周霞芳;;無污染 充電快 春節(jié)后有望面市 周國(guó)泰院士解密“超級(jí)電容器”[J];環(huán)境與生活;2012年01期

5 江奇,瞿美臻,張伯蘭,于作龍;電化學(xué)超級(jí)電容器電極材料的研究進(jìn)展[J];無機(jī)材料學(xué)報(bào);2002年04期

6 朱修鋒,王君,景曉燕,張密林;超級(jí)電容器電極材料[J];化工新型材料;2002年04期

7 景茂祥,沈湘黔,沈裕軍,鄧春明,翟海軍;超級(jí)電容器氧化物電極材料的研究進(jìn)展[J];礦冶工程;2003年02期

8 朱磊,吳伯榮,陳暉,劉明義,簡(jiǎn)旭宇,李志強(qiáng);超級(jí)電容器研究及其應(yīng)用[J];稀有金屬;2003年03期

9 賀福;碳(炭)材料與超級(jí)電容器[J];高科技纖維與應(yīng)用;2005年03期

10 鄧梅根,楊邦朝,胡永達(dá);卷繞式活性炭纖維布超級(jí)電容器的研究[J];功能材料;2005年08期

相關(guān)會(huì)議論文 前10條

1 馬衍偉;張熊;余鵬;陳堯;;新型超級(jí)電容器納米電極材料的研究[A];2009中國(guó)功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年

2 張易寧;何騰云;;超級(jí)電容器電極材料的最新研究進(jìn)展[A];第二十八屆全國(guó)化學(xué)與物理電源學(xué)術(shù)年會(huì)論文集[C];2009年

3 鐘輝;曾慶聰;吳丁財(cái);符若文;;聚苯乙烯基層次孔碳的活化及其在超級(jí)電容器中的應(yīng)用[A];中國(guó)化學(xué)會(huì)第15屆反應(yīng)性高分子學(xué)術(shù)討論會(huì)論文摘要預(yù)印集[C];2010年

4 趙家昌;賴春艷;戴揚(yáng);解晶瑩;;扣式超級(jí)電容器組的研制[A];第十二屆中國(guó)固態(tài)離子學(xué)學(xué)術(shù)會(huì)議論文集[C];2004年

5 單既成;陳維英;;超級(jí)電容器與通信備用電源[A];通信電源新技術(shù)論壇——2008通信電源學(xué)術(shù)研討會(huì)論文集[C];2008年

6 王燕;吳英鵬;黃毅;馬延風(fēng);陳永勝;;單層石墨用作超級(jí)電容器的研究[A];2009年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊(cè))[C];2009年

7 趙健偉;倪文彬;王登超;黃忠杰;;超級(jí)電容器電極材料的設(shè)計(jì)、制備及性質(zhì)研究[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場(chǎng)摘要集[C];2010年

8 張琦;鄭明森;董全峰;田昭武;;基于薄液層反應(yīng)的新型超級(jí)電容器——多孔碳電極材料的影響[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場(chǎng)摘要集[C];2010年

9 馬衍偉;;新型超級(jí)電容器石墨烯電極材料的研究[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第7分冊(cè))[C];2010年

10 劉不厭;彭喬;孫s,

本文編號(hào):2484647


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2484647.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶fae0f***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com