天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 材料論文 >

碳納米管的分散性研究及其與聚乙烯醇復(fù)合纖維的制備

發(fā)布時(shí)間:2019-03-18 11:48
【摘要】:本課題分別用物理和化學(xué)的方法對(duì)多壁碳納米管(MWCNTs)進(jìn)行表面修飾,使其接枝親水基團(tuán),進(jìn)而改善其在溶劑中的分散性。將改性后的碳納米管與聚乙烯醇(PVA)共混,經(jīng)過濕法紡絲和熱拉伸制得PVA/MWCNTs復(fù)合纖維,并對(duì)其結(jié)構(gòu)和性能進(jìn)行了研究,主要研究內(nèi)容與結(jié)論如下:(1)通過傅克烷基化反應(yīng)將PVA接枝到MWCNTs的表面,通過對(duì)比優(yōu)化出最佳反應(yīng)條件,核磁共振(13C NMR)和拉曼光譜(Raman spectra)證明了PVA和碳管之間的化學(xué)鍵連接。將制得的功能化MWCNTs(f-MWCNTs)在溶劑(DMSO/H2O(vol ratio=3/1))中進(jìn)行分散,并在室溫下放置一定時(shí)間,觀察其分散情況,并通過紫外-可見分光光度計(jì)(UV-vis),透射電子顯微鏡(TEM)觀測其分散程度,結(jié)果表明碳納米管能夠在溶劑中均勻地分散。另外,傳統(tǒng)的以王水處理MWCNTs使其表面帶上羧基進(jìn)而改善其水溶性的方法也作為對(duì)比試驗(yàn)進(jìn)行。實(shí)驗(yàn)及測試結(jié)果表明,王水處理過的MWCNTs表面有嚴(yán)重的破壞,碳管表面的石墨烯層存在大量的缺陷,而傅克烷基化處理的碳納米管結(jié)構(gòu)幾乎沒有受到破壞。(2)將最佳分散的f-MWCNTs和PVA通過濕法紡絲工藝制備PVA/f-MWCNTs復(fù)合纖維并進(jìn)行熱拉伸。對(duì)制成的纖維進(jìn)行力學(xué),熱學(xué),表面形貌和導(dǎo)電性能進(jìn)行研究,結(jié)果表明,PVA/f-MWCNTs復(fù)合纖維的強(qiáng)度和模量與純PVA纖維對(duì)比分別增加了280.6%和421.0%。差示掃描量熱法(DSC)結(jié)果說明碳納米管的引入降低了PVA的結(jié)晶性能,而掃描電子顯微鏡(SEM)圖像間接說明了在復(fù)合纖維中,一開始隨著碳納米管含量的增加碳納米管與聚合物基體之間的結(jié)合力逐漸變大,而當(dāng)碳管含量達(dá)到一定的含量時(shí),會(huì)發(fā)生團(tuán)聚現(xiàn)象,進(jìn)而對(duì)復(fù)合纖維力學(xué)和導(dǎo)電性能都產(chǎn)生嚴(yán)重影響。王水處理的碳管在相同條件下所得纖維無論是熱穩(wěn)定性還是力學(xué)性能都遠(yuǎn)遠(yuǎn)低于f-MWCNTs復(fù)合纖維。(3)作為與化學(xué)修飾的對(duì)比,用迷迭香酸(RosA)和其他幾種分散劑(單寧酸,十二烷基苯磺酸鈉和原花青素)分別對(duì)碳納米管進(jìn)行表面修飾,在室溫條件下放置一段時(shí)間,觀察其分散性,并采用TEM,UV-vis光譜對(duì)溶液進(jìn)行表征,結(jié)果表明經(jīng)過RosA修飾的碳納米管(m-MWCNTs)能夠在室溫下穩(wěn)定分散在水溶液中達(dá)30天,TEM表明碳納米管的規(guī)整石墨烯結(jié)構(gòu)并沒有遭到破壞。核磁共振氫譜(1H NMR)和拉曼光譜結(jié)果表明多壁碳納米管和RosA之間存在???堆垛的相互作用。(4)把經(jīng)RosA修飾的碳管和聚乙烯醇溶液進(jìn)行共混,通過濕法紡絲以及熱拉伸的工藝制成PVA/m-MWCNTs復(fù)合纖維并進(jìn)行表征。DSC表明了m-MWCNTs的引入相當(dāng)于在體系中引入了成核劑,其結(jié)晶變得更加容易。力學(xué)性能的測試表明碳管的引入能夠提高纖維的強(qiáng)度和模量,同時(shí)不會(huì)對(duì)纖維表面造成大的影響。
[Abstract]:In this paper, the surface modification of multi-walled carbon nanotubes (MWCNTs) was carried out by means of physical and chemical methods, and the hydrophilic groups were grafted onto them to improve their dispersibility in solvent. The modified carbon nanotubes (CNTs) were blended with polyvinyl alcohol (PVA), and the PVA/MWCNTs composite fibers were prepared by wet spinning and hot drawing. The structure and properties of the composite fibers were studied. The main contents and conclusions are as follows: (1) PVA was grafted onto the surface of MWCNTs by Fourier alkylation, and the optimum reaction conditions were optimized by comparison. Nuclear magnetic resonance (13C NMR) and Raman spectroscopy (Raman spectra) proved the chemical bonding between PVA and carbon tube. The functionalized MWCNTs (f-MWCNTs) was dispersed in the solvent (DMSO/H2O (vol ratio=3/1) and placed at room temperature for a period of time to observe its dispersion. The dispersion was observed by ultraviolet-visible spectrophotometer (UV-vis). The degree of dispersion of CNTs was observed by transmission electron microscope (TEM). The results showed that CNTs could be dispersed uniformly in solvent. In addition, the traditional treatment of MWCNTs with Wang Shui to bring carboxyl groups on its surface and improve its water solubility was also carried out as a contrast test. The experimental and test results show that the surface of MWCNTs treated by Wang Shui has serious damage, and there are a lot of defects in the graphite layer on the surface of carbon tube. However, the structure of CNTs treated by Fourier alkylation was almost undamaged. (2) the best dispersed f-MWCNTs and PVA were prepared by wet spinning and hot drawing of PVA/f-MWCNTs composite fibers. The mechanical, thermal, surface morphology and conductive properties of the fibers were studied. The results showed that the strength and modulus of PVA/f-MWCNTs composite fibers were 280.6% and 421.0% higher than those of pure PVA fibers, respectively. The results of differential scanning calorimetry (DSC) (DSC) showed that the introduction of CNTs decreased the crystallization properties of PVA, while the (SEM) images of scanning electron microscopy (SEM) indirectly showed that in the composite fibers, the crystalline properties of CNTs were decreased. At first, with the increase of the content of carbon nanotubes, the bonding force between carbon nanotubes and polymer matrix gradually increased, but when the content of carbon nanotubes reached a certain content, there would be agglomeration phenomenon. Furthermore, the mechanical and conductive properties of composite fibers are seriously affected. The thermal stability and mechanical properties of the carbon tube treated by Wang Shui under the same conditions are much lower than that of the f-MWCNTs composite fiber. (3) as a comparison with the chemical modification, the fiber obtained by Wang Shui is much lower in thermal stability and mechanical properties. Carbon nanotubes (CNTs) were modified with rosemary acid (RosA) and other dispersants (tannic acid, sodium dodecyl benzene sulfonate and procyanidins) respectively. The dispersion of CNTs was observed at room temperature for a period of time. The dispersion of CNTs was observed by TEM,. The solution was characterized by UV-vis spectra. The results showed that RosA-modified carbon nanotubes (m-MWCNTs) could be stably dispersed in aqueous solution for up to 30 days at room temperature. TEM showed that the regular graphene structure of CNTs was not destroyed. Nuclear magnetic resonance (1H NMR) and Raman spectra show that there exists between multi-walled carbon nanotubes (MWNTs) and RosA. Stacking interaction. (4) blending of RosA modified carbon tubes and polyvinyl alcohol solution. PVA/m-MWCNTs composite fibers were prepared by wet spinning and hot drawing. It was shown that the introduction of m-MWCNTs was equivalent to the introduction of nucleating agent in the system, and its crystallization became easier. The test of mechanical properties shows that the introduction of carbon tube can improve the strength and modulus of the fiber, but it has no great effect on the surface of the fiber.
【學(xué)位授予單位】:蘇州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB383.1;TQ342.94

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王鵬飛;用于合成纖維的分散性染料[J];化學(xué)世界;1963年09期

2 ;分散性染料工藝配方改革[J];上海紡織科技動(dòng)態(tài);1978年06期

3 顧莉英;;西德1983年用于建筑的分散性涂料的生產(chǎn)情況[J];化學(xué)建材通訊;1985年01期

4 章杰;;提高顏料分散性的新技術(shù)[J];涂料工業(yè);1987年04期

5 張根生;趙全;李繼光;岳曉霞;;影響大豆分離蛋白分散性因素的研究[J];食品工業(yè)科技;2006年03期

6 ;分散性染料印刷標(biāo)牌工藝[J];儀器制造;1981年02期

7 田濤;電鍍鋅鋼絲鋅層重量分散性研究[J];金屬制品;1989年02期

8 王平,宋蘭花,黃毓禮;非水介質(zhì)中磁粉對(duì)吸附質(zhì)的吸附量與分散性的關(guān)系[J];北京化工學(xué)院學(xué)報(bào)(自然科學(xué)版);1990年01期

9 杜偉坊;杜海清;;高鋁質(zhì)電瓷材料的強(qiáng)度分散性研究[J];電瓷避雷器;1990年06期

10 王岳俊;周康根;蔣志剛;;加料方式對(duì)超細(xì)氧化亞銅粉體分散性與粒度穩(wěn)定性的影響[J];無機(jī)材料學(xué)報(bào);2012年02期

相關(guān)會(huì)議論文 前10條

1 熊華鋒;姚衛(wèi)星;;復(fù)合材料疲勞分散性和強(qiáng)度分散性關(guān)系[A];第十四屆全國疲勞與斷裂學(xué)術(shù)會(huì)議論文集[C];2008年

2 廖明義;張偉清;單薇;;蒙脫土的表面修飾及其在非極性溶劑中分散性的研究[A];納米材料與技術(shù)應(yīng)用進(jìn)展——第四屆全國納米材料會(huì)議論文集[C];2005年

3 張暉;孫明清;李卓球;;水泥基復(fù)合材料中碳纖維的分散性研究[A];第五屆中國功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集Ⅱ[C];2004年

4 彭俊;昝菱;;納米二氧化鈦的分散性研究[A];第四屆中國功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2001年

5 王長江;姚衛(wèi)星;;飛機(jī)載荷分散性研究[A];第十五屆全國疲勞與斷裂學(xué)術(shù)會(huì)議摘要及論文集[C];2010年

6 李小紅;劉峰;張治軍;黨鴻辛;王樹鑾;;可分散性SiO_2納米微粒的結(jié)構(gòu)及摩擦學(xué)性能[A];第十三屆全國電子顯微學(xué)會(huì)議論文集[C];2004年

7 董世運(yùn);涂偉毅;徐濱士;;復(fù)合電解質(zhì)溶液中納米SiO_2顆粒分散性及其表面動(dòng)電電位[A];中國顆粒學(xué)會(huì)2004年年會(huì)暨海峽兩岸顆粒技術(shù)研討會(huì)會(huì)議文集[C];2004年

8 戴晉明;王淑花;高向華;魏麗喬;許并社;;納米SiO_2復(fù)合抗菌材料分散性的研究[A];納米材料和技術(shù)應(yīng)用進(jìn)展——全國第三屆納米材料和技術(shù)應(yīng)用會(huì)議論文集(下卷)[C];2003年

9 張榮波;許崇海;馮日美;肖光春;;Al_2O_3/TiC_(0.7)N_(0.3)及ZrO_2/TiC_(0.7)N_(0.3)兩相納米復(fù)合粉體懸浮液分散性的研究[A];《硅酸鹽學(xué)報(bào)》創(chuàng)刊50周年暨中國硅酸鹽學(xué)會(huì)2007年學(xué)術(shù)年會(huì)論文摘要集[C];2007年

10 萬剛強(qiáng);李東祥;侯萬國;;聚乙二醇修飾的層狀雙金屬氫氧化物的形貌和分散性研究[A];中國化學(xué)會(huì)第十三屆膠體與界面化學(xué)會(huì)議論文摘要集[C];2011年

相關(guān)重要報(bào)紙文章 前1條

1 蔣霖;分散性產(chǎn)險(xiǎn)產(chǎn)品營銷渠道探析[N];中國企業(yè)報(bào);2006年

相關(guān)碩士學(xué)位論文 前9條

1 張培;碳納米管的分散性研究及其與聚乙烯醇復(fù)合纖維的制備[D];蘇州大學(xué);2015年

2 熊華鋒;復(fù)合材料疲勞分散性與強(qiáng)度分散性的關(guān)系[D];南京航空航天大學(xué);2009年

3 趙多;水熱合成法制備氧化鋯及分散性的研究[D];遼寧科技大學(xué);2014年

4 冒愛琴;超細(xì)二氧化鈦的表面處理及其在水中分散性的研究[D];南京理工大學(xué);2004年

5 江柯敏;球狀及其它新型炭材料的制備與表征[D];暨南大學(xué);2007年

6 楊林江;聚苯胺修飾碳載體擔(dān)載Pd催化劑分散性與穩(wěn)定性DFT研究[D];重慶大學(xué);2011年

7 高銘澤;納米SiO_2復(fù)合環(huán)氧樹脂中納米粒子分散性與介電性關(guān)系[D];哈爾濱理工大學(xué);2014年

8 牛冬子;二氧化硅基復(fù)合功能微球的制備及其應(yīng)用[D];中國海洋大學(xué);2012年

9 高蓮花;納米氣泡對(duì)疏水顆粒分散性影響的研究[D];上海師范大學(xué);2012年



本文編號(hào):2442835

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2442835.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶cfdc4***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com