碳納米管的分散性研究及其與聚乙烯醇復(fù)合纖維的制備
[Abstract]:In this paper, the surface modification of multi-walled carbon nanotubes (MWCNTs) was carried out by means of physical and chemical methods, and the hydrophilic groups were grafted onto them to improve their dispersibility in solvent. The modified carbon nanotubes (CNTs) were blended with polyvinyl alcohol (PVA), and the PVA/MWCNTs composite fibers were prepared by wet spinning and hot drawing. The structure and properties of the composite fibers were studied. The main contents and conclusions are as follows: (1) PVA was grafted onto the surface of MWCNTs by Fourier alkylation, and the optimum reaction conditions were optimized by comparison. Nuclear magnetic resonance (13C NMR) and Raman spectroscopy (Raman spectra) proved the chemical bonding between PVA and carbon tube. The functionalized MWCNTs (f-MWCNTs) was dispersed in the solvent (DMSO/H2O (vol ratio=3/1) and placed at room temperature for a period of time to observe its dispersion. The dispersion was observed by ultraviolet-visible spectrophotometer (UV-vis). The degree of dispersion of CNTs was observed by transmission electron microscope (TEM). The results showed that CNTs could be dispersed uniformly in solvent. In addition, the traditional treatment of MWCNTs with Wang Shui to bring carboxyl groups on its surface and improve its water solubility was also carried out as a contrast test. The experimental and test results show that the surface of MWCNTs treated by Wang Shui has serious damage, and there are a lot of defects in the graphite layer on the surface of carbon tube. However, the structure of CNTs treated by Fourier alkylation was almost undamaged. (2) the best dispersed f-MWCNTs and PVA were prepared by wet spinning and hot drawing of PVA/f-MWCNTs composite fibers. The mechanical, thermal, surface morphology and conductive properties of the fibers were studied. The results showed that the strength and modulus of PVA/f-MWCNTs composite fibers were 280.6% and 421.0% higher than those of pure PVA fibers, respectively. The results of differential scanning calorimetry (DSC) (DSC) showed that the introduction of CNTs decreased the crystallization properties of PVA, while the (SEM) images of scanning electron microscopy (SEM) indirectly showed that in the composite fibers, the crystalline properties of CNTs were decreased. At first, with the increase of the content of carbon nanotubes, the bonding force between carbon nanotubes and polymer matrix gradually increased, but when the content of carbon nanotubes reached a certain content, there would be agglomeration phenomenon. Furthermore, the mechanical and conductive properties of composite fibers are seriously affected. The thermal stability and mechanical properties of the carbon tube treated by Wang Shui under the same conditions are much lower than that of the f-MWCNTs composite fiber. (3) as a comparison with the chemical modification, the fiber obtained by Wang Shui is much lower in thermal stability and mechanical properties. Carbon nanotubes (CNTs) were modified with rosemary acid (RosA) and other dispersants (tannic acid, sodium dodecyl benzene sulfonate and procyanidins) respectively. The dispersion of CNTs was observed at room temperature for a period of time. The dispersion of CNTs was observed by TEM,. The solution was characterized by UV-vis spectra. The results showed that RosA-modified carbon nanotubes (m-MWCNTs) could be stably dispersed in aqueous solution for up to 30 days at room temperature. TEM showed that the regular graphene structure of CNTs was not destroyed. Nuclear magnetic resonance (1H NMR) and Raman spectra show that there exists between multi-walled carbon nanotubes (MWNTs) and RosA. Stacking interaction. (4) blending of RosA modified carbon tubes and polyvinyl alcohol solution. PVA/m-MWCNTs composite fibers were prepared by wet spinning and hot drawing. It was shown that the introduction of m-MWCNTs was equivalent to the introduction of nucleating agent in the system, and its crystallization became easier. The test of mechanical properties shows that the introduction of carbon tube can improve the strength and modulus of the fiber, but it has no great effect on the surface of the fiber.
【學(xué)位授予單位】:蘇州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB383.1;TQ342.94
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王鵬飛;用于合成纖維的分散性染料[J];化學(xué)世界;1963年09期
2 ;分散性染料工藝配方改革[J];上海紡織科技動(dòng)態(tài);1978年06期
3 顧莉英;;西德1983年用于建筑的分散性涂料的生產(chǎn)情況[J];化學(xué)建材通訊;1985年01期
4 章杰;;提高顏料分散性的新技術(shù)[J];涂料工業(yè);1987年04期
5 張根生;趙全;李繼光;岳曉霞;;影響大豆分離蛋白分散性因素的研究[J];食品工業(yè)科技;2006年03期
6 ;分散性染料印刷標(biāo)牌工藝[J];儀器制造;1981年02期
7 田濤;電鍍鋅鋼絲鋅層重量分散性研究[J];金屬制品;1989年02期
8 王平,宋蘭花,黃毓禮;非水介質(zhì)中磁粉對(duì)吸附質(zhì)的吸附量與分散性的關(guān)系[J];北京化工學(xué)院學(xué)報(bào)(自然科學(xué)版);1990年01期
9 杜偉坊;杜海清;;高鋁質(zhì)電瓷材料的強(qiáng)度分散性研究[J];電瓷避雷器;1990年06期
10 王岳俊;周康根;蔣志剛;;加料方式對(duì)超細(xì)氧化亞銅粉體分散性與粒度穩(wěn)定性的影響[J];無機(jī)材料學(xué)報(bào);2012年02期
相關(guān)會(huì)議論文 前10條
1 熊華鋒;姚衛(wèi)星;;復(fù)合材料疲勞分散性和強(qiáng)度分散性關(guān)系[A];第十四屆全國疲勞與斷裂學(xué)術(shù)會(huì)議論文集[C];2008年
2 廖明義;張偉清;單薇;;蒙脫土的表面修飾及其在非極性溶劑中分散性的研究[A];納米材料與技術(shù)應(yīng)用進(jìn)展——第四屆全國納米材料會(huì)議論文集[C];2005年
3 張暉;孫明清;李卓球;;水泥基復(fù)合材料中碳纖維的分散性研究[A];第五屆中國功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集Ⅱ[C];2004年
4 彭俊;昝菱;;納米二氧化鈦的分散性研究[A];第四屆中國功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2001年
5 王長江;姚衛(wèi)星;;飛機(jī)載荷分散性研究[A];第十五屆全國疲勞與斷裂學(xué)術(shù)會(huì)議摘要及論文集[C];2010年
6 李小紅;劉峰;張治軍;黨鴻辛;王樹鑾;;可分散性SiO_2納米微粒的結(jié)構(gòu)及摩擦學(xué)性能[A];第十三屆全國電子顯微學(xué)會(huì)議論文集[C];2004年
7 董世運(yùn);涂偉毅;徐濱士;;復(fù)合電解質(zhì)溶液中納米SiO_2顆粒分散性及其表面動(dòng)電電位[A];中國顆粒學(xué)會(huì)2004年年會(huì)暨海峽兩岸顆粒技術(shù)研討會(huì)會(huì)議文集[C];2004年
8 戴晉明;王淑花;高向華;魏麗喬;許并社;;納米SiO_2復(fù)合抗菌材料分散性的研究[A];納米材料和技術(shù)應(yīng)用進(jìn)展——全國第三屆納米材料和技術(shù)應(yīng)用會(huì)議論文集(下卷)[C];2003年
9 張榮波;許崇海;馮日美;肖光春;;Al_2O_3/TiC_(0.7)N_(0.3)及ZrO_2/TiC_(0.7)N_(0.3)兩相納米復(fù)合粉體懸浮液分散性的研究[A];《硅酸鹽學(xué)報(bào)》創(chuàng)刊50周年暨中國硅酸鹽學(xué)會(huì)2007年學(xué)術(shù)年會(huì)論文摘要集[C];2007年
10 萬剛強(qiáng);李東祥;侯萬國;;聚乙二醇修飾的層狀雙金屬氫氧化物的形貌和分散性研究[A];中國化學(xué)會(huì)第十三屆膠體與界面化學(xué)會(huì)議論文摘要集[C];2011年
相關(guān)重要報(bào)紙文章 前1條
1 蔣霖;分散性產(chǎn)險(xiǎn)產(chǎn)品營銷渠道探析[N];中國企業(yè)報(bào);2006年
相關(guān)碩士學(xué)位論文 前9條
1 張培;碳納米管的分散性研究及其與聚乙烯醇復(fù)合纖維的制備[D];蘇州大學(xué);2015年
2 熊華鋒;復(fù)合材料疲勞分散性與強(qiáng)度分散性的關(guān)系[D];南京航空航天大學(xué);2009年
3 趙多;水熱合成法制備氧化鋯及分散性的研究[D];遼寧科技大學(xué);2014年
4 冒愛琴;超細(xì)二氧化鈦的表面處理及其在水中分散性的研究[D];南京理工大學(xué);2004年
5 江柯敏;球狀及其它新型炭材料的制備與表征[D];暨南大學(xué);2007年
6 楊林江;聚苯胺修飾碳載體擔(dān)載Pd催化劑分散性與穩(wěn)定性DFT研究[D];重慶大學(xué);2011年
7 高銘澤;納米SiO_2復(fù)合環(huán)氧樹脂中納米粒子分散性與介電性關(guān)系[D];哈爾濱理工大學(xué);2014年
8 牛冬子;二氧化硅基復(fù)合功能微球的制備及其應(yīng)用[D];中國海洋大學(xué);2012年
9 高蓮花;納米氣泡對(duì)疏水顆粒分散性影響的研究[D];上海師范大學(xué);2012年
,本文編號(hào):2442835
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2442835.html